a compendium of AICRPDA, CRIDA, AICPMIP, NRCS, AICRPM, SAUs, and Agro-Industries

Districtwise
Promising Technologies
for Rainfed Cereals based
Production Systems in India

Editors
G Ravindra Chary
GR Maruthi Sankar
G Subba Reddy
YS Ramakrishna
AK Singh
AK Gogoi
KV Rao

All India Coordinated Research Project for Dryland Agriculture
Central Research Institute for Dryland Agriculture
Hyderabad - 500 059
2008
Contributors

All India Coordinated Research Project for Dryland Agriculture (AICRPDA), Hyderabad
G Ravindra Chary
G Subba Reddy
GR Maruthi Sankar

Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad
YS Ramakrishna
KV Rao

Indian Council of Agricultural Research (ICAR), New Delhi
AK Singh
AK Gogoi

All India Coordinated Pearl Millet Improvement Project
IS Khairwal

National Research Centre for Sorgum
N Seetharama

All India Coordinated Research Project on Millets
KT Krishne Gouda

Agro Industries
• Implements • Seeds
• Fertilizers • Pesticides

Secretarial Assistance by
G Varalakshmi

GIS Support by
I Ram Mohan

Main Centres
AM Patel, SK Nagar
B Behera, Phulbani
Bhagwan Singh, Faizabad
DN Singh, Ranchi
DP Dubey, Rewa
DR Padmani, Rajkot
JR Kadam, Solapur
K Veerabhadra Rao, Anantapur
MA Shankar, Bangalore
MB Guled, Bijapur
MB Nagdeve, Akola
MG Umate, Parbhani
MP Jain, Indore
PK Mishra, Bellary
PM Jain, Arjia
RP Mor, Hisar
SB Tripathi, Jhansi
SC Sharma, Ballowal Saunkhri
SK Patil, Jagdalpur
SPS Chauhan, Agra
SR Singh, Varanasi
V Subramanian, Kovilpatti

Operational Research Projects (ORPs)
DH Ranade, Indore
H Mariraju, Bangalore
LK Midha, Hisar
MS Yadav, Ranchi
SK Sharma, Arjia
SP Surve, Solapur
Sukhwinder Singh, Ballowal Saunkhri
Y Padmalatha, Ananthapur

State Department(s) of Agriculture
• Andhra Pradesh • Chhatisgarh • Gujarat • Haryana
• Karnataka • Madhya Pradesh • Maharashtra • Orissa
• Rajasthan • Tamil Nadu • Uttar Pradesh

Technical Assistance by
A. Girija, RVVSGK Raju, L Sree Ramulu

Supported by
S Devika and I Usha Rani

Other Assistance
N Manikya Rao, V Amarender

The opinions in this publication are those of the locations. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the AICRPDA, CRIDA or ICAR. Where trade names are used this does not constitute endorsement of or discrimination against product.

Printed at : Vamsi Art Printers Pvt. Ltd., Hyderabad, Ph : 040-23311858
Contents

Introduction

Maize based production system
- Andhra Pradesh ... 3
- Chattisgarh ... 12
- Gujarat ... 15
- Haryana ... 18
- Karnataka ... 20
- Madhya Pradesh ... 25
- Maharashtra ... 38
- Orissa ... 41
- Rajasthan ... 46
- Uttar Pradesh ... 53

Sorghum based production system
- Gujarat ... 67
- Haryana ... 71
- Karnataka ... 74
- Madhya Pradesh ... 78
- Maharashtra ... 86
- Rajasthan ... 97
- Tamil Nadu ... 102
- Uttar Pradesh ... 106

Pearlmillet based production system
- Gujarat ... 113
- Haryana ... 121
- Karnataka ... 124
- Maharashtra ... 132
- Rajasthan ... 141
- Tamil Nadu ... 147
- Uttar Pradesh ... 150

Fingermillet based production system
- Andhra Pradesh ... 163
- Karnataka ... 167
- Maharashtra ... 182
- Orissa ... 186

Popular and Botanical Names of Some Rainfed Crops ... 193 -194

Generic and Brand Names of Some Pesticides ... 195 -198
INTRODUCTION

Rainfed Agro-eco system occupies the largest cultivated area in the country and produces most of rainfed cereals (Maize, Sorghum, Pearl millet, Fingermillet and other minor millets), pulses and oilseeds. These crops provide staple food for millions of poor people in arid and semi-arid regions. These crops are highly adopted to drought conditions and are also the major source of fodder for livestock.

Among rainfed cereals, sorghum is the third major food grain of the country grown in 11-12 m ha. There has been a steady decline in area under kharif sorghum over the last three decades, despite substantial improvement in productivity. At all India level, significant replacement of kharif sorghum area took place with competing crops, while rabi sorghum is staple food crop for millions of people in Maharashtra and Karnataka. The area under sorghum in rabi remained more or less constant but the productivity has not improved significantly since it is grown with residual moisture. Pearl millet is grown in 9.9 m ha in rainfed environment in 340 districts of the country. The area under this crop is stagnant in Madhya Pradesh, Maharashtra, Gujarat, Tamilnadu and Karnataka. But the productivity is increasing in all pearl millet predominant districts except in states of Gujarat, Maharashtra and Uttar Pradesh. Fingermillet is predominantly grown in states of Karnataka, Maharashtra, Andhra Pradesh and Orissa. The area under this crop is decreasing in the states of Karnataka and Orissa while it is stable in Maharashtra and Andhra Pradesh. The productivity is stable in Orissa and Maharashtra while it declined in Karnataka and increased in the state of Andhra Pradesh. Among cereals, maize is grown in 5.6 m ha out of which 3.95 m ha (86%) is rainfed. The area under this crop is stable in Punjab, while it showed an increasing trend in the states of Rajasthan and Andhra Pradesh. The productivity of this crop showed an increasing trend in all the predominantly maize growing states like Punjab, Rajasthan, Gujarat and Andhra Pradesh. Keeping this situation in view, efforts have been made to document viable and profitable technologies of rainfed cereals with collaboration of All India Coordinated Research Projects of Sorghum, Pearl millet and Fingermillet under different rainfed production systems.

Cropping region

In the rainfed agriculture, crop diversification for risk reduction is the farmers’ weapon against aberrant weather. Thus the crop area distribution is wide spread, but a few districts contain most of the area. The area under districts was arranged according to the area covered in descending order. The districts covering 85% of the maize, sorghum, pearl millet and fingermillet cropped area were selected and recognized as a crop region. Under each of the crops, the priority districts are listed in the later chapters.

Productivity zones

The districts in a crop region vary in productivity, annual normal rainfall and length of growing period. The later two identifies with an agro eco region, while the former with a crop based
production system. By taking these three attributes, a cluster analysis was made and optimum number of clusters were identified. Based on statistical significance, the yield and area growth rates were defined as increasing, decreasing or stagnant.

Yield gap and surplus index of productivity zones

For these cluster of districts, the surplus index (ratio of runoff to average annual normal rainfall) was calculated by (Thornthwaite and Mather method, 1955). The surplus index was divided into three groups – low (less than 12%), medium (12-25%) and high (more than 25%). Necessary soil and water conservation methods were identified. The details follow:

<table>
<thead>
<tr>
<th>Surplus Index</th>
<th>Possible Options</th>
</tr>
</thead>
<tbody>
<tr>
<td><12</td>
<td>In situ conservation</td>
</tr>
<tr>
<td>12-25</td>
<td>In situ conservation and water harvesting</td>
</tr>
<tr>
<td>>25</td>
<td>Drainage, in situ conservation and water harvesting</td>
</tr>
</tbody>
</table>

The yield gap between productivity of crop (average yield of 1990-91 to 1994-95 for which period authentic published data is available) and achievable yield (calculated based on water use efficiency, water requirement and water requirement satisfaction index), was estimated for each district. The average yield gap of cluster was grouped as low (<33%), medium (33-66%) and high (>66%). The possible options for productivity enhancement are –

<table>
<thead>
<tr>
<th>Yield Gap</th>
<th>Possible Options</th>
</tr>
</thead>
<tbody>
<tr>
<td><33</td>
<td>Non monetary inputs, input management and improved varieties</td>
</tr>
<tr>
<td>33-66</td>
<td>Non monetary inputs, fertilizer management and improved varieties</td>
</tr>
<tr>
<td>>66</td>
<td>Improved varieties, fertilizer management, plant protection measures, non monetary inputs or shifting to alternate land uses, contingent crop planning</td>
</tr>
</tbody>
</table>

Recommendations Domain

Strategies were matched with the matrix of surplus index and yield gap of clusters based on above options. Recommendations were derived for these clusters from the nearest research center of National Agricultural Research System (NARS), All India Coordinated Research Project for Dryland Agriculture (AICRPDA) or publications for the region, agro-industries.

Recommendations are given for crop based production system, state-wise and cluster(s) of districts. These consist of soil and water conservation, crop management (varieties, seed rate, planting pattern, nutrient management, pest management, suitable cropping systems, farm implements / tools, alternate farming systems and contingent planning. A region was described in terms of agro-geographic setting i.e. climate, physiography, soils, annual rainfall, potential evapo-transpiration (PET) and moisture availability period. The identified priorities for increasing the productivity in short term are also included.
MAIZE BASED PRODUCTION SYSTEM

Maize is grown in 5.19 mha in 346 districts out of which 3.95 mha is rainfed. About 85% of the rainfed area (2.71 mha) is in 67 districts.

<table>
<thead>
<tr>
<th>Selection Criteria</th>
<th>No. of Districts</th>
<th>Area under Maize ('000 ha)</th>
<th>Area under Rainfed Maize ('000 ha)</th>
<th>Gross Cropped Area ('000 ha)</th>
<th>Yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfed States (13)</td>
<td>346</td>
<td>5188</td>
<td>3954</td>
<td>167668</td>
<td>1328</td>
</tr>
<tr>
<td>AESR 3-13</td>
<td>261</td>
<td>4100</td>
<td>3196</td>
<td>131273</td>
<td>1366</td>
</tr>
<tr>
<td>Cumulative 85% Rainfed Maize Area</td>
<td>67</td>
<td>3047</td>
<td>2710</td>
<td>35416</td>
<td>1352</td>
</tr>
</tbody>
</table>

The trends in area, production and productivity of maize in India (1980 - 2005) are shown in Fig. 1.

The popular production systems in the various agro-eco sub regions are:

- Maize + blackgram
- Maize – Chickpea
- Maize – Fallow/ chickpea/ safflower
- Maize + soybean/ groundnut – safflower
- Pigeonpea + maize
- Maize – mustard/ chickpea/ wheat
- Maize/cowpea – sesamum
- Maize + cowpea/ pigeonpea/Yarn
- Maize/ Pigeonpea – fallow/wheat
- Maize + rajma

Details on associated crops livestock are presented below:

<table>
<thead>
<tr>
<th>Crops</th>
<th>Animals</th>
<th>Districts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorghum</td>
<td>Male Cattle</td>
<td>Bastar, Bilaspur, Surguja, Chhindwara, Mandla, Siddhi, Shahdol,</td>
</tr>
<tr>
<td>Soybean</td>
<td>Goats</td>
<td>Guna, Indore, Ratlam, Mandasur, Dewas, Dhar, Jhabua, Khargone,</td>
</tr>
<tr>
<td>Maize</td>
<td>Female Cattle</td>
<td>Betul, Shajapur, Nizambad, Medak, Warangal, Karimnagar,</td>
</tr>
<tr>
<td>Chickpea</td>
<td>Female Buffalo</td>
<td>Adilabad, Mysore, Shimoga, Dharwad, Dhule, Sabarkantha, Bhundi,</td>
</tr>
<tr>
<td>Vegetables</td>
<td>Sheep</td>
<td>Chittorgarh, Jhalawar, Kota, Tonk, Lalitpur, Kheri, Baran, Ganjam,</td>
</tr>
<tr>
<td>Fruits</td>
<td>Male Buffalo</td>
<td>Kalahandi, Keonjhar, Koraput, Phulbani, Hazardibagh, Palamur</td>
</tr>
<tr>
<td>Maize, Chickpea,</td>
<td>Goats</td>
<td>Shivpuri, Panchmahal, Banswara, Bhiwara,</td>
</tr>
<tr>
<td>Pearlmillet, Sorghum,</td>
<td>Male Cattle</td>
<td>Dungarpur, Udaipur, Etah, Buduan, Farukhabad,</td>
</tr>
<tr>
<td>Vegetables, Fruits</td>
<td>Female Buffalo</td>
<td>Jaunpur, Ballia, Unnao, Sitapur, Hardoi,</td>
</tr>
<tr>
<td></td>
<td>Female Cattle</td>
<td>Rajasamund, Kanpur (Dehat), Dumka</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male Buffalo</td>
<td></td>
</tr>
</tbody>
</table>
Wheat, Maize, Fruits, Female Buffalo, Kaira, Gurdaspur, Hoshiarpur, Roopnagar, Female Cattle, Ambala, Saharanpur
Pearlmillet, Vegetables, Male cattle
Lentil, Male cattle
Potato, Chickpea, Goats
Cotton, Sorghum, Sheep
Blackgram, Barley, Male Buffalo
Soybean, Horsegram

Fig. 1. Trends in Area, Production and Productivity of Maize in India (1980-2005)
ANDHRA PRADESH

In Andhra Pradesh there are two districts viz. Nizamabad and Karimnagar under low runoff and low yield gap region and three districts viz. Adilabad, Medak and Warangal under medium runoff and medium yield gap region. The trends in area, production and productivity of maize in Andhra Pradesh (1980 - 2005) are shown in Fig. 2.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>Nizambad and Karimnagar</td>
<td>Low runoff and Low yield gap</td>
</tr>
<tr>
<td></td>
<td>(North West Telangana plateau)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Nizambad</th>
<th>Karimnagar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot semi arid</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 85 %; Vertisols – 15 %</td>
<td>Vertic soils – 70 %; Vertisols – 30 %</td>
</tr>
<tr>
<td></td>
<td>Shallow and Medium loamy</td>
<td>Deep loamy, Clayey mixed red and black soils</td>
</tr>
<tr>
<td></td>
<td>Medium and deep clayey black soils</td>
<td></td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>909</td>
<td>880</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1802</td>
<td>1802</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120 – 150</td>
<td>120 – 150</td>
</tr>
</tbody>
</table>

Soil and water conservation

- More emphasis on in situ water conservation
- Increasing soil infiltration capacity and reducing soil crusting problem

Crop management

- Varieties: DHM-1, DHM-107, DHM-109, Ashwini, Harsha, Varun
Fig. 2. Trends in Area, Production and Productivity of Maize in Andhra Pradesh (1980-2005)
• **Seed rate:** 18 kg/ha
• **Planting pattern:** 75 x 20 or 60 x 25 cm
• **Nutrient management**
 • 60 – 80 kg N + 30 - 40 kg P₂O₅/ha.
 • N in two splits i.e., 50% as basal and 50% at knee high stage
• **Some other important practices**
 • **Sowing-** *Kharif*: May to June
 • **Rabi** – October to November
 • Seed treatment with thiram 2 to 3 g per kg seed

Suitable cropping systems
• Maize + greengram/blackgram

Farm Implements / tools
• Fertilizer cum seed drill
• Bullock drawn two-row sweep cultivator
• Modified Two-row Blade harrow
• Bullock drawn country plough attached with Pore tube

Alternate farming systems
• **Parkland systems:** *Azadirachta indica, Acacia nilotica, Tamarindus indica*
• **Trees on bunds:** *Tectona grandis, Leucaena leucocephala, Borassus flabellifera, Cocos nucifera, Acacia nilotica var. cupressiformis*
• **Silvipstoral system:** *Leucaena leucocephala + Stylosanthes hamata, Leucaena leucocephala + Cenchrus ciliaris*
• **Alley cropping:** *Leucaena leucocephala + sorghum/ Pearlmillet, Gliricidia sepium + sorghum/pearlmillet*
• **Agrohorti system:** Mango + short duration pulses
• **Fruit:** Mango, Ber, Custard apple, Guava, Pomegranate, Amla
• **Fodder/ green biomass:** *Albizia lebbeck, D.sissoo, Leucaena, Azadiracta, Hardwickia binata, Acacia albida*
• **Fruit:** Custard apple, Tamarind, Jamun, Mango, Ber
• **Medicinal/ Aromatic Plants:** *Cassia angustifolia, Catharanthus roseus, Plantago ovata, Palma rosa, Vetiveria zyzanoides.*
• **Vegetables:** Cluster bean, Drum stick, Cucumber, Cow pea, Ridge gourd, Round melon, Okra, Water melon.
• **Animal component**: Sheep, Goat, Male & Female Cattle

Contingent planning

• **For Red soils**

 • **June**:
 - Sole crop: Sorghum (CSH 5, CSH-6, CSH-9) Pearlmillet (MBH-110)
 - Intercrop: Sorghum- pigeonpea (2:1)
 - Pearlmillet + pigeonpea (2:1) in 45 cm row spacing. Pigeonpea duration of 150-180 days may be used.

 • **July**:
 - Sole crop: Fingermillet
 - Bunch variety of Groundnut (TMV-2, JL-24)
 - Intercrop: Maize (DHM-101, Ganga-5)
 - Maize + pigeonpea (2:1) at 50 cm spacing. Pigeonpea duration of 180-200 days

 • **August**:
 - Sole crop: Setaria (H-1, Arjuna) for grain to poultry feed and straw for fodder
 - Castor (Aruna, GAUCH –1) with increased seed rate (15 kg/ha)

• **For Black soils**

 • **First crop**

 • **June**:
 - Sorghum (CSH-5, CSH-6)
 - Maize: (Ganga - 5, DHM-101)
 - Greengram (PS-16, HB-45, LRG –30)

 • **July**:
 - Maize (Ganga - 5, DHM-101)
 - Greengram (PS-16, HB-45, LRG –30)

• **Second crop**

 • **September**:
 - *Maghi* Sorghum (Moti, CSH-6)
 - Safflower: (Manjira)

• **October**:

 • Safflower: (Manjira)
 • Chickpea (Jyothi)

• **Shallow black soils**

 • Only *kharif* cropping is suggested Followed by Greengram – pigeonpea (3:1) in July.
Soil and water conservation
- On sloppy land contour cultivation along vegetative hedge of vetiver or *Leucaena* at 0.5 m vertical interval.
- Broad bed furrows
- Compartmental bunding
- Sowing across the slope
- Contour farming (cultivation and sowing along contour)

Crop management
- **Varieties**: DHM – 1, DHM-107, DHM-109, Ashwini, Harsha, Varun
- **Seed rate**: 18 kg/ha
- **Planting pattern**: 75 x 20 or 60 x 25 cm
- **Nutrient management**
 - 60 – 80 kg N + 30 - 40 kg P₂O₅/ha.
 - N in two splits i.e., 50% as basal and 50% at knee high stage
- **Some other important practices**
 - **Sowing**- *Kharif* - May to June
 - **Rabi** – October to November
 - Seed treatment with thiram 2 to 3 g per kg seed

Suitable cropping systems
- Maize + greengram/blackgram
- Maize - chickpea

Farm Implements / tools
- Fertilizer cum seed drill
• Bullock drawn two-row sweep cultivator
• Modified Two-row Blade harrow
• Bullock drawn country plough attached with Pore tube

Alternate farming systems

• Parkland systems: *Azadirachta indica*, *Acacia nilotica*, *Tamarindus indica*
• Trees on bunds: *Tectona grandis*, *Leucaena leucocephala*, *Borassus flabellifera*, *Cocos nucifera*, *Acacia nilotica var. cupressiformis*
• Silvipstoral system: *Leucaena leucocephala* + *Stylosanthes hamata*, *Leucaena leucocephala* + *Cenchrus ciliaris*
• Alley cropping: *Leucaena leucocephala* + sorghum/ Pearlmillet, *Gliricidia sepium* + sorghum/pearlmillet
• Agrohorti system: Mango + short duration pulses
• Fruit: Mango, Ber, Custard apple, Guava, Pomegranate, Amla
• Fodder/ green biomass: *Albizia lebbeck*, *D. sissoo*, *Leucaena*, *Azadirachta*, *Hardwickia binata*, *Acacia albida*
• Fruit: Custard apple, Tamarind, Jamun, Mango, Ber
• Medicinal/ Aromatic Plants: *Cassia angustifolia*, *Catharanthus roseus*, *Plantago ovata*, *Palma rosa*, *Vetiveria zyzanoides*.
• Vegetables: Cluster bean, Drum stick, Cucumber, Cow pea, Ridge gourd, Round melon, Okra, Water melon.
• Animal component: Sheep, Goat, Male and Female Cattle

Contingent planning

• For Red soils
• June
 • Sole crop: Sorghum (CSH-5, CSH-6, CSH-9) Pearlmillet (MBH - 110)
 • Intercrop: Sorghum+ pigeonpea (2:1)
 • Pearlmillet + pigeonpea (2:1) in 45 cm row spacing. Pigeonpea duration of 150-180 days may be used.
• July
 • Sow castor (Aruna, GAUCH-1)
 • Sole fingermillet
 • Bunch variety of Groundnut (TMV-2, JL-24)
 • Intercrop: Maize (DHM-101, Ganga-5)
 • Maize + pigeonpea (2:1) at 50 cm spacing. Pigeonpea duration of 180-200 days
• August
 • Sole crop: Setaria (h-1, Arjuna) for grain to poultry feed and straw for fodder
 • Castor (Aruna, GAUCH –1) with increased seed rate (15 kg/ha)
Districtwise Promising Technologies for Rainfed Cereals based Production System in India

- **For Black soils**
- **First crop**
 - **June**
 - Sorghum (CSH-5, CSH-6)
 - Maize: (Ganga - 5, DHM-101)
 - Greengram (PS-16, HB-45, LRG –30)
 - **July**
 - Maize (Ganga 5, DHM-101)
 - Greengram (PS-16, HB-45, LRG –30)
- **Second crop**
 - **September**
 - Maghi Sorghum (Moti, CSH-6)
 - Safflower: (Manjira)
 - **October**
 - Safflower: (Manjira)
 - Gram (Jyothi)

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Medak</th>
<th>Warangal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot Moist semi arid</td>
<td>Hot Moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Sandy Alfisol – 75 %;</td>
<td>Sandy Alfisol – 40 %;</td>
</tr>
<tr>
<td></td>
<td>Vertic soils – 25 %;</td>
<td>Vertic soils – 35 %;</td>
</tr>
<tr>
<td></td>
<td>Deep loamy, Clayey mixed red</td>
<td>Deep loamy, Clayey mixed red</td>
</tr>
<tr>
<td></td>
<td>and black soils</td>
<td>and black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>835</td>
<td>925</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1758</td>
<td>1790</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120 – 150</td>
<td>120 – 150</td>
</tr>
</tbody>
</table>

Soil and water conservation
- More emphasis on *in situ* water conservation
- Increasing soil infiltration capacity and reducing soil crusting problem

Crop management
- **Varieties/Hybrids**: DHM-1, DHM-107, DHM-109, Ashwini, Harsha, Varun
- **Seed rate**: 18 kg/ha
- **Planting pattern**: 75 x 20 or 60 x 25 cm
Nutrient management
- 60 – 80 kg N + 30 - 40 kg P₂O₅/ha.
- N in two splits i.e., 50% as basal and 50% at knee high stage

Some other important practices
- Sowing: Kharif-May to June
- Rabi – October to November
- Seed treatment with thiram 2 to 3 g per kg seed

Suitable cropping systems
- Maize + greengram/blackgram

Farm Implements / tools
- Bullock drawn two-row sweep cultivator
- Modified Two-row Blade harrow
- Bullock drawn country plough attached with Pore tube

Alternate farming systems
- Trees on crop lands
 - Parkland systems: Azadirachta indica, Acacia nilotica, Tamarindus indica
 - Trees on bunds: Tectona grandis, Leucaena leucocephala, Borassus flabellifera, Cocos nucifera, Acacia nilotica var. cupressiformis
 - Silvipstoral system: Leucaena leucocephala + Stylosanthes hamata, Leucaena leucocephala + Cenchrus + ciliaris
 - Alley cropping: Leucaena leucocephala + sorghum/ Pearl millet, Gliricidia sepium + sorghum/pearl millet
 - Agrohorti system: Mango + short duration pulses
 - Fruit: Mango, Ber, Custard apple, Guava, Pomegranate, Amla
 - Fodder/green biomass: Albizia lebbeck, D.sissoo, Leucaena, A.zadiracta, Hardwickia binata, Acacia albida
 - Fruit: Custard apple, Tamarind, Jamun, Mango, Ber
 - Medicinal & Aromatic Plants: Cassia angustifolia, Catharanthus roseus, Plantago ovata, Palma rosa, Vetiveria zyzyanoides.
 - Vegetables: Cluster bean, Drum stick, Cucumber, Cow pea, Ridge gourd, Round melon, Okra, Water melon.
 - Animal Component: Sheep, Goat, and Male & Female Cattle

Contingent planning
- For Red soils
- June
• Sole crop: Sorghum (CSH-5, CSH-6, CSH-9) Pearlmillet (MBH-110)
• Intercrop: Sorghum- pigeonpea (2:1)
 Pearlmillet + pigeonpea (2:1) in 45 cm row spacing. Pigeonpea duration of 150-180 days may be used.

• July
• Sole crop: Fingermillet
 Bunch variety of Groundnut (TMV-2, JL-24)
• Intercrop: Maize (DHM-101,Ganga-5)
 Maize + pigeonpea (2:1) at 50 cm spacing. Pigeonpea duration of 180-200 days

• August
• Sole crop: Setaria (H-1, Arjuna) for grain to poultry feed and straw for fodder
• Castor (Aruna, GAUCH –1) with increased seed rate (15 kg/ha)

• For Black soils
• First crop
• June
 • Sorghum (CSH-5, CSH-6)
 • Maize: (Ganga-5, DHM-101)
 • Greengram (PS-16, HB-45, LRG –30)
• July
 • Maize (Ganga-5, DHM-101)
 • Greengram (PS-16, HB-45, LRG –30)
• Second crop
• September
 • Maghi Sorghum (Moti, CSH-6)
 • Safflower: (Manjira)
• October
 • Safflower (Manjira)
 • Chickpea (Jyothi)
CHATTISGARH

In Chattisgarh there is one district viz. Bilaspur under high runoff and medium yield gap region. and one district viz. Surguja under high runoff and high yield gap region.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chattisgarh</td>
<td>Bilaspur (Chattisgarh/ Mahanandi Basin)</td>
<td>High runoff and medium yield gap</td>
</tr>
</tbody>
</table>

Agro-geographic setting

<table>
<thead>
<tr>
<th>Climate</th>
<th>Hot moist / dry sub humid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td>Ustalf/Ustolls –100%, Deep loamy to clayey red and yellow soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1327</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1475</td>
</tr>
<tr>
<td>Length of growing period (LGP)</td>
<td>150 – 180</td>
</tr>
<tr>
<td>moisture availability period (days)</td>
<td></td>
</tr>
</tbody>
</table>

Soil and water conservation

- Sowing across the slope
- Contour farming

Crop management

- **Varieties**: Satha, Chandan - 2, Chandan - 3, Ganga - 5, JK-1, JK – 41, JK - 62
- **Seed rate**: 15 – 18 kg/ha
- **Planting pattern**: 60 x 30 cm
- **Nutrient management**
 - 40 kg N + 40 kg P₂O₅/ha for desi Maize.
 - 80 kg N + 60 kg P₂O₅/ha for hybridesi Maize.
 - Full quantity of P and half dose of N should be applied at sowing and half dose of N at after first weeding

Alternate Farming systems

- **Agro – hortisystem**: Mango + Pea / Berseem (green fodder) / Wheat/ gram / soybean
- **Silvi – pastoral system**: Teak + sudan gram
- **Fodder/green biomass**: A. lebbeck, Leucaena, D.sissoo, A.indica, Sesbania, Pongamia
- **Fruit**: Ber, Mango Sapota, Tamarind, Fig
- **Medicinal & Aromatic Plants**: Papaver somniferum, Rauvolfia, Liquorice, Safedmusli, Palma rosa
- **Vegetables**: Tomato, Okra, Bottle gourd, Ridgegourd, Amaranthus, Drumstick
- **Animal component**: Female Cattle, Male Cattle, Female Buffaloes, Male Buffaloes
Contingent planning

June
1) Sole crop
 a) Sorghum (CSH - 5, JS - 1041)
 b) Green gram (K - 850)
 c) Blackgram (JU - 2, PDU - 4)
 d) Groundnut (Jawahar Jyoti, M - 13)

2) Inter crop
 a) Sorghum + pigeonpea (2 :1)
 b) Soybean + pigeonpea (2 :1)

July
1) Sole crop
 a) Rice (IR - 50, JR - 345)
 b) Kodo (JK - 155, JK - 76, JK - 136)
 c) Sorghum (CSH - 5)
 d) Pigeonpea (NPWR - 15, JA - 4, Asha)
 e) Groundnut (Jyoti, M - 12, Exotic 1-1)

2) Inter crop
 a) Sorghum + pigeonpea (2 :1)
 b) Soybean + pigeonpea (2 :1)

August
 Castor (Aruna)
 Pigeonpea (No.148)

October
 a) Wheat (JW - 17, C - 306)
 b) Chickpea (JG - 321, JG - 315)
 c) Linseed (JL - 23, R - 552)
 d) Barley (Karan - 4, Jyoti)
 e) Lentil (JL - 1, Malika)

State District Region
Chattisgarh Surguja (Northern Chattisgarh) High runoff and High yield gap

Agro-geographic setting
Surguja

Climate
Soils Ustalf/Ustolls – 100%
Annual rainfall (mm) 1406
Potential evapotranspiration (mm) 1471
Length of growing period (LGP) / moisture availability period (days)

Soil and water conservation

- Broadbed furrow
- Contour farming
- Inter-plot water harvesting
- Raised bed and sunken system
Crop management

- **Varieties**: Satha, Chandan - 2, Chandan - 3, Ganga - 5, JK-1, JK – 41, JK - 62
- **Seed rate**: 15 – 18 kg/ha
- **Planting pattern**: 60 x 30 cm
- **Nutrient management**
 - 40 kg N + 40 kg P₂O₅/ha for desi Maize.
 - 80 kg N + 60 kg P₂O₅/ha for hybridesi Maize.
 - Full quantity of P and half dose of N should be applied at sowing and half dose of N at after first weeding

Alternate farming systems

- **Agro – hortisystem**: Mango + Pea / Berseem (green fodder) / Wheat/ gram / soybean
- **Silvi – pastoral system**: Teak + sudan gram
- **Fodder/green biomass**: *Leucaena leucocephala*, *Albizia amara*, *Dichrostachys cineria*, *Melia azadirachta*, *Hardwickia binata*, *A.lebbeck*
- **Fruit**: Mango, Ber, Guava, Tamarind, Karonda
- **Medicinal & Aromatic Plants**: *Safed musli*, *Palma rosa*, *Withania somnifera*, *Papaver somniferum*, *Vetiveria zyzanoides*
- **Vegetables**: Brinjal, Chilli, Cowpea, Okra, Bottle gourd, round melon.
- **Animal component**: Female Cattle, Male Cattle, Female Buffaloes, Goats
GUJARAT

In Gujarat there are three districts viz. Sabarkanta, Kaira and Panchmahals under medium runoff and medium yield gap region. The trends in area, production and productivity of maize in Gujarat (1980 - 2005) are shown in Fig. 3.

Agro-geographic setting

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gujarat</td>
<td>Sabarkantha (North Gujarat Plains)</td>
<td>Medium runoff and Medium yield gap</td>
</tr>
<tr>
<td></td>
<td>Kaira and Panchmahals (Eastern Gujarat Plain)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Sabarkantha</th>
<th>Kaira</th>
<th>Panchmahals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot dry semi arid</td>
<td>Hot moist semi arid</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 50%; Ustalf/Ustolls – 50%</td>
<td>Ustalf/Ustolls – 60%; Vertic soils – 40%</td>
<td>Vertic soils – 100%</td>
</tr>
<tr>
<td></td>
<td>Deep loamy grey brown and alluvium - derived soils</td>
<td>Deep clayey black soils, Shallow black soils</td>
<td>Deep clayey black soils, Shallow black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>885</td>
<td>929</td>
<td>833</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1608</td>
<td>1596</td>
<td>1560</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>90 – 120</td>
<td>120 – 150</td>
<td>120 – 150</td>
</tr>
</tbody>
</table>

Soil and water conservation

- More emphasis on *in situ* water conservation
- Increasing soil infiltration capacity and reducing soil crusting problem
- Absorption terracing
- Inter-row water harvesting
- Dead furrows at 3.6 m interval
Fig. 3. Trends in Area, Production and Productivity of Maize in Gujarat (1980-2005)
Crop management

- Locally available suitable varieties may be adopted.

Alternate farming systems

- **Agro-horti system**: Ber + sorghum/green gram were grown between two rows of ber
- **Fodder/green biomass**: The farmers growing Ber(10x6m) on light textured soils are advised to take inter crop of either greengram or sorghum (fodder) A.lebbeck, A. indica, A albida, Cassia siamia, D.sissoo, Alianthus excelsa
- **Fruit**: Mango, Pome granate, Guava, Ber, Fig, Jamun
- **Medicinal & Aromatic Plants**: Plantago ovata, Cassia angustifolia, Liquorice
- **Vegetables**: Drumstick, Cluster bean, Cowpea, Long melon, Okra
- **Animal component**: Female Cattle, Male Cattle, Female Buffaloes, and Goats

Contingent planning

- **Normal sowing (Early July)**
 - Crops
 - Castor: GCH-4, GCH-5, GCH-6
 - Pearlmillet: GHB-235, GHB-316
 - Cowpea: Guj. Cowpea-4
 - Clusterbean: Guj. Clusterbean-1
 - Greengram: Guj. Mung-4
 - Sorghum: GSF-4
 - Mothbean: Guj-1
 - Karingado: Guj. Karingado-1

- **Delayed sowing (15th July to early August)**
 - Crops
 - Castor: GCH-4
 - Sorghum: GSF-4
 - Cluster bean: Guj. Clusterbean-1

- **Very delayed sowing (mid August)**
 - Crop
 - Castor: GCH-4
In Haryana there is one district viz. Ambala under medium runoff and medium yield gap region.

Agro-geographic setting

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haryana</td>
<td>Ambala (North East Haryana)</td>
<td>Medium runoff and Medium yield gap</td>
</tr>
</tbody>
</table>

- **Climate**: Hot dry/ moist sub humid (transitional)
- **Soils**: Inceptisols – 100 %
 - Deep loamy to clayey alluvium - derived soils
- **Annual rainfall (mm)**: 959
- **Potential evapotranspiration (mm)**: 1482
- **Length of growing period (LGP) / moisture availability period (days)**: 120 – 150

Soil and water conservation

- Increasing soil infiltration capacity and reducing soil crusting problem
- Inter-plot water harvesting of 1:1 cropped to uncropped land
- Dead furrows at 3.6 m intervals
- Land shaping
- Pre monsoon/ summer tillage and ridge furrow configurations across the land slope to improve moisture storage.
Crop management
• Locally available suitable hybrids may be adopted.

Farm Implements / tools
• Use of blade type wheel hand hoe to save time and energy for interculture operations
• Tractor – drawn ridger – seeder (3 Point hitch tools)
• Bullock-drawn Ridger seeds
• Bullock-drawn interculture blade harrow
• Hand wheel Hoe

Alternate farming systems
• Agrohortisystem: Ber + cowpea/greengram/clusterbean/Aryan grass
• Fodder/ green biomass: Agri-Horti system of ber intercropped with cowpea, greengram, clusterbean and anjan grass.
 • A.lebbeck P.cineraria, Melia azadirachta [for saline soils], D.sissoo, A.indica.
• Fruit: Guava, Amla, Karonda, Phalsa, Bael, Jamun
• Medicinal & Aromatic Plants: Plantago ovata, Palma rosa, Vetiveria zyanoides, Ocimum viride, Liquorice.
• Vegetables: Tomato, Chillies Okra, Cowpea, Palak, Bottle gourd
• Animal Component: Female Buffaloes, Sheep
KARNATAKA

In Karnataka there are three districts viz. Dharwad, Shimoga, and Mysore under low runoff and low yield gap region.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karnataka</td>
<td>Dharwad (Western Karnataka plateau)</td>
<td>Low runoff and Low yield gap</td>
</tr>
<tr>
<td></td>
<td>Shimoga (Central West Karnataka)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mysore (Southern Karnataka plateau)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Dharwad</th>
<th>Shimoga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot dry sub humid</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hot moist sub humid to humid (transitional)</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 70%; Vertisols – 30%</td>
<td>Sandy Alfisols – 100%</td>
</tr>
<tr>
<td></td>
<td>Shallow and medium loamy and clayey black soils, Deep clayey black soils</td>
<td>Medium to deep red loamy soils, Deep loamy to clayey red and lateritic soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>813</td>
<td>1045</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1665</td>
<td>1381</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>150 – 180</td>
<td>120 – 270</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Rubbles at 0.3 m vertical interval on contour key lines
- Compartmental bunding, ridges and furrows, contour cultivation
• Planting Khus grass and subabul in paired rows at vertical interval of 0.3 m
• Bund stabilisation through *stylosanthes* slope
• Bund planting with neem, sissoo and tamarind
• A farm pond of 150 m³ capacity for every one hectare catchment area to harvest excess runoff in medium to deep black soils
• *In-situ* moisture conservation practices like compartmental bunding, ridges and furrows contour cultivation and fall ploughing helped to conserve more moisture in deep black soils.

Farm Implements / tools
• In shallow and marginal eroded soils, growing of agave and subabul is advocated

Alternate farming systems
• **Fodder/green biomass:** *D.sissoo, Glyricidia, A.lebbeck, H.binata, Cassia siamea, Azadirachta indica*
• **Fruit:** Cultivation of mango, ber, sapota and curry leaf in the zing conservation bench terraces, waterways and on the embankment of farm ponds. Mango, Pomegranate, Sapota, Ber, Jamun, Tamarind
• **Medicinal & Aromatic Plants:** *Cassia angustifolia, Catharanthus roseus, Palma rosa, Vetiverie zyzanoides, Rose, Geranium,*
• **Vegetables:** Onion, Brinjal, chillies, Cowpea, Cucumber, Cluster bean, Drumstick.
• **Animal Component:** Female and male Cattle, Female Buffaloes, Goat, Sheep and Poultry

Mysore (Southern Karnataka plateau)

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Mysore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Sandy Alfisol – 100 %</td>
</tr>
<tr>
<td></td>
<td>Medium to deep red loamy soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>920</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1535</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120 – 150</td>
</tr>
</tbody>
</table>

Soil and water conservation
• More emphasis on *in situ* water conservation
• Reducing soil crusting problem
• Dead furrows at 3.6 m interval
• Farm pond size of 250m³ plastered both sides and bottom with cement + sandy clay soils (1:8)
• Opening furrows on 0.2 to 0.4 slope
• Summer tillage
The existing bund itself could be modified to act as graded bund by internal land smoothening open end contour bunds (0.8 m\(^2\)) or graded bunds (0.36 m\(^2\)) on a slope of 0.2 to 0.4\%. Waterways are a viable with outlets.

Developing deeper soil (<45 cm) in to graded border strips of 10-12 m width on a gradient of 0.2 to 0.4 percent along the length.

Alleviation of crust is possible with the addition of 10 t FYM/ha, 5 tones maize residue/ha and 25 sand t/ha.

Crop management

- **Varieties:** Ganga-11, Deccan-103, Vijay composite, NAC 6004 (Composite), NAC 6002 (Composite)
- **Seed rate:** 15 kg/ha
 - Fodder Maize – 100 kg/ha
- **Planting Pattern:** 60 or 75 x 20 cm
 - 30 x 10 cm
- **Nutrient management**
 - 10 t FYM/ha + 75kg N + 50 kg P\(_2\)O\(_5\) + 25 kg K\(_2\)O +10 kg zinc sulphate /ha.
 - N in 2 splits, ½ at sowing and ½ at knee high stage. Place P 5 cm deep from the seed.
 - For Fodder Maize: 5 t FYM/ha + 37.5kg N + 50 kg P\(_2\)O\(_5\) + 38 kg K\(_2\)O +10 kg zinc sulphate and apply N in 2 splits, ½ at sowing and ½ at knee high stage. Place P 5 cm deep from the seed.

Suitable cropping systems

- Pigeonpea - maize (1:1)

<table>
<thead>
<tr>
<th>Tools/Implements</th>
<th>Cost/Unit (Rs.)</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullock drawn seed-cum-fertilizer drill (Finger millet)</td>
<td>1500/-</td>
<td>Bullock drawn manual operation for finger millet seeding and fertilizer application (Hand metered)</td>
</tr>
<tr>
<td>Bullock drawn seed-cum-fertilizer drill (Groundnut)</td>
<td>1500/-</td>
<td>Groundnut seeding with fertilizer application</td>
</tr>
<tr>
<td>Multi furrow opener</td>
<td>1300/-</td>
<td>Opening furrows for hand seeding of different crops</td>
</tr>
<tr>
<td>Bent tyne hoe</td>
<td>350/-</td>
<td>Intercultural operation for finger millet</td>
</tr>
<tr>
<td>Duck foot hoe</td>
<td>350/-</td>
<td>Intercultural operation for finger millet and groundnut for moisture conservation (Hand metered)</td>
</tr>
<tr>
<td>Crust brakes</td>
<td>500/-</td>
<td>For breaking the crust to facilitate smooth emergence of the seeding in finger millet and groundnut.</td>
</tr>
</tbody>
</table>

Farm Implements / tools

Alternate farming systems

- **Fodder/green biomass:**
 - *Cassuarina and silver Oak are better suited than other three species like eucalyptus, neem, Leucaena,*

Acacia etc.

- *Faidherbia albida* is more suitable for planting on bunds (E-W direction) in micro-watershed.
- *Stylosanthes hamata* is most suitable. *Stylosanthes scabra* should be adopted for gravelly shallow soils with low rainfall.
- *Acacia auriculiformis, Cassia siamea, Dalbergia sissoo,* subabul and amla are more suitable and promising than other deep-rooted high water intensive tree species under high gradient non-arable lands with shallow soils and rock out crops. For better establishment, trench method of planting is better than pit method.
- Bamboo, Jambulina, pongamia, neem, *Albizia lebbeck,* peepal, and ficus species can be planted in the catch pits and pockets of deep soil.
- Grasses like *Pennisetum pedicellatum or Cenchrus ciliaris* and legumes like *Microtelium axillaries* are suitable forage species.
- *L. leucocephala, Albizia lebbeck, Dalbergia sissoo, A.indica, Pongamia, Cassia siamea*

- **Fruit:**
 - In suit grafting/ budding of fruits trees like mango and ber found to be more economical than using grafted plants.
 - Custard apple, Jack and tamarind were other species suitable to waste lands.
 - Mango, Phylanthus and Jambulina performed better in the non-arable land.
 - Mango, Pomegranate, Sapota, Guava, Custard apple, Jamun

- **Medicinal & Aromatic Plants:** *Catharanthus roseus, Cassia angustifolia, Solanum viarum, Dioscorea, Geranium, Pogostemon patchouli, Jasmine*

- **Vegetables:** Tomato, Chillies, Okra Water melon, Bitter gourd, Drum stick, Brinjal, Bitter gourd

- **Animal component:** Female Cattle, Male Cattle, Female Buffaloes, Sheep, Goat and Poultry

<table>
<thead>
<tr>
<th>Month and Fortnight (FN) in which normal rains occur</th>
<th>Crops that could be sown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monocropping</td>
</tr>
<tr>
<td>April-II FN</td>
<td>Sesame or greengram</td>
</tr>
<tr>
<td>May I FN</td>
<td>Pigeonpea</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>May-II FN</td>
<td>Pigeonpea</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>June-I FN</td>
<td>Long duration Finger millet, Pigeonpea,</td>
</tr>
<tr>
<td></td>
<td>Maize, Groundnut</td>
</tr>
<tr>
<td>June-II FN</td>
<td>Long duration Finger millet, pigeonpea,</td>
</tr>
<tr>
<td></td>
<td>Maize and Groundnut</td>
</tr>
<tr>
<td>July-I FN</td>
<td>Groundnut, long duration finger millet</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>July-II FN</td>
<td>Groundnut, long/medium duration fingermillet</td>
</tr>
</tbody>
</table>
All India Coordinated Research Project for Dryland Agriculture (AICRPDA)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>August II FN</td>
<td>Short duration finger millet, transplanting of medium and long duration finger millet. Transplanting chilli. Cowpea, Horsegram</td>
<td>Short duration finger millet, transplanting of medium and long duration finger millet, transplanting chilli. Cowpea. Horsegram. Also, Fodder crops (Maize-Pearl millet, sorghum)</td>
</tr>
<tr>
<td>September I FN</td>
<td>Horsegram, Transplanting of short duration finger millet and chilli (with protective irrigation)</td>
<td>Horsegram, Transplanting of short duration finger millet and chilli (with protective irrigation)</td>
</tr>
</tbody>
</table>

Contingent Planning

Alternate /Contingency crop production practices for drought mitigation

- Dry sowing in finger millet, sorghum, maize, pigeonpea, groundnut and castor when monsoon is delayed. For crops with big seeds and less seed rate, like pigeonpea, pelletisation of seed is to be done before dry sowing.
- Maintain optimum plant population by thinning.
- Repeated inter cultivation coupled with weeding and weed mulching.
- Preventive measures against pests and diseases.
- Double split top dressing.
- Controlled grazing by animals to reduce excess vegetative growth to prevent transpiration in finger millet and horsegram
MADHYA PRADESH

In Madhya Pradesh there are four districts viz. Chhindwara, Khargone, Mandsaur and Shajapur under medium runoff and medium yield gap region, seven districts viz. Betul, Dewas, Jhabua, Ratlam, Indore, Sidhi and Shivapure under high runoff and high yield gap region, one district viz. Mandla under high runoff and medium yield gap region and two districts viz. Guna and Sahadol under high runoff high yield gap region.

<table>
<thead>
<tr>
<th>State</th>
<th>District Description</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madhya Pradesh</td>
<td>Chhindwara (Southern Madhya Pradesh)</td>
<td>Medium runoff and Medium yield gap</td>
</tr>
<tr>
<td></td>
<td>Khargone (Madhya Bharat Plateau)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mandsaur (Western Malwa Plateau)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shajapur (Malwa Plateau)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Chhindwara</th>
<th>Khargone</th>
<th>Mandsaur</th>
<th>Shajapur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist sub humid</td>
<td>Hot moist semi arid</td>
<td>Hot moist semi arid</td>
<td>Hot dry sub humid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 85%; Vertisols – 15%</td>
<td>Vertic soils – 100%; Shallow black soils, medium and deep clayey black soils, shallow loamy soils</td>
<td>Vertic soils – 100%; Deep clayey black soils</td>
<td>Vertic soils – 90%; Vertisols – 10 %; Deep clayey black soils, Shallow black soils, Medium and deep clayey black soils, Shallow loamy black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1094</td>
<td>888</td>
<td>962</td>
<td>1117</td>
</tr>
<tr>
<td>Potential evapotranspiration(mm)</td>
<td>1427</td>
<td>1792</td>
<td>1601</td>
<td>1643</td>
</tr>
<tr>
<td>Length of growing period (LGP)/ moisture availability period (days)</td>
<td>180 – 210</td>
<td>120 – 180</td>
<td>120 – 150</td>
<td>120 - 180</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Broad bed furrow (BBF) for soybean
- Gabion structures in waterways
- Graded border strips
- Sowing across the slope and ridging later
- Compartmental bunding
- Mulching
- Provide in situ soil mulch by operating bullock drawn dora to fill up the cracks, to conserve the soil moisture and to achieve weed control. Straw as mulch @ 4-5 t/ha in between the rows of crop plants to minimize evaporative losses, moisture conservation and to increase moisture efficiency in rabi crops.
- Develop a sort of terracing to break the continuity of undulating slope to reduce the changes of degrading cultivated fields in to gullied one.
- Mould board plough, used for deep tillage to increase the productivity of kharif crops and enhance sowing of rabi crops through better moisture conservation and eradication of infested weeds.
• Straighten the gullied portion in the farmers’ fields through earth moving machinery to reduce the length of gully allowing safe passage for the run off water. It brings additional area under cultivation through reclamation process.

• Construct percolation tank for increasing ground water recharge and enhancing ground water storage to provide extra irrigation to the crops.

• Use gabion as an inlet and outlet of water harvesting tank without any structural failure to trap silt on the upstream sit to increase life of water storage bodies.

• Construct water-harvesting tank to retrain the excess run off from the watershed area to use stored water for irrigation purpose.

• Silpaulin (a plastic material) of 90 – 120 gsm has been found effective lining material for farm ponds used for water harvesting purposes.

• Use vegetative barriers to strengthen the mechanical bunds at suitable vertical intervals in order to reduce run off in associated soil losses from the cultivated fields.

• Develop a sort of terracing break the continuity of undulating slope to reduce the chances of degrading cultivated fields in to gullied one.

• Use mould board plough for deep tillage to increases the productivity of kharif crops and ensure sowing of rabi crop through better moisture conservation and eradication of infested weeds.

• Ensure drainage line treatment for providing safe disposal of excess run off and providing more opportunity time in order to reduce erosive velocity.

• Graded bunds alone and / or along with vegetative barriers at vertical intervals of 50 cm proves most effective in controlling soil erosion and nutrient losses on soils having slope up to 2 per cent.

• Off-season shallow tillage is important not only in controlling the weeds but also in helping entry of rain water.

Crop management

• **Varieties**: JM 8, JM 12, Navjot, Chandan 3, Chandan Safed, NLD

• **Hybrids**: Ganga - 5, Deccan - 107, Deccan - 109 and KH - 510

• **Seed rate**: Composites 18 -20 kg /ha

 Hybrids: – 16 – 18 kg /ha

• **Planting pattern**: 60 x 20 cm, 75 x 20 cm

• **Nutrient management**

 • Composites: 80 kg N + 60 kg P₂O₅ + 20 kg K₂O. Apply 50 % N as basal and 50 % in two split at knee height and tasseling

 • Hybrids: 100 kg N + 60 kg P₂O₅ + 20 kg K₂O. Apply 50 % N as basal and 50 % in two split at knee height and tasseling

Some other important practices

• Seed treatment with thiram @ 3 g/kg seed.

• Sowing on onset of monsoon

Suitable cropping systems

• Monocropping of Maize (for cobs) in kharif in shallow black soils

• Maize + chickpea + safflower in deep black soils
Farm Implements / tools

- Suitable Implements For Seedbed Preparations:
 - Meston Plough
 - Iron Bakhar

- Suitable Implements For Sowing Operations:
 - Mahakal Dufan
 - Mahakal Tifan and
 - Sarta attachment for intercropping

- Suitable Implements / Tools For Interculture Operations:
 - hand dora (small blade harrow)
 - Bullock drawn dora (small blade harrow with wooden beam)
 - Indore ridger

Alternate farming systems

- Trees on croplands:

- Fodder/green biomass: *Dichrostachys cineria*, *Albizzia amara*, *Faidherbia albida*, *Hardwickia binata*, *Cassia*, *Leucaena leucocephala*, *Albizia lebbeck*

- Fruit: *Ber*, *Pomegranate*, *Mango*, *Fig*, *Tamarind*

- Medicinal & Aromatic Plants: *Withamnia somnifera*, *Rauvolfia serpentina*, *Vetiveria zizanoides*, *Palma rosa*, *Liquorice*.

- Vegetables: *Chillies*, *Okra*, *Watermelon*, *Cowpea*, *Cluster bean*, *Amaranth*, *round melon*.

- Animal component: Female and male Cattle, Female Buffaloes, Goat and Poultry

Contingent planning

If monsoon is delayed or there is failure of timely sown crops due to intermittent droughts then for delayed sowing improved crops and their varieties may be chosen for planting, as given below:

<table>
<thead>
<tr>
<th>Period</th>
<th>Crops and their varieties recommended for planting</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) 15th to 31st July</td>
<td>Maize - (short duration varieties like Navjot, sathi, etc.).
Pigeonpea - (under deep soils preferred varieties ICPL 151, T-21,
Kh-2, ICPL-87, ICPL-88039 etc.).
Sunflower – Morden, Surya, Manjira and any other hybrids
Sesame – Bhadeli, TKG 22, TKG 37 etc.
Cowpea – Pusa Komal and Pusa Baisakhi .
Castor – Gauch and Varuna.
Fodder crops – Sorghum sudanensis, Maize- African tall,
Dinanath grass and Pearl millet etc.</td>
</tr>
</tbody>
</table>
(B) 1st to 15th August
Sunflower – Morden, Surya, Manjira and any of the hybrids.
Sesame – Bhadeli, TKG 22, TKG 37 etc.
Cowpea – Pusa Komal and Pusa Baisakhi.
Rajgira (Ameranthus)- Co-1 and Co-2.
Castor- Gauch, Varuna.
Fodder crops – Sorghum Sudanensis, Maize- African tall,
Dinanath grass and Pearl millet etc.

(C) 15th to 31st August
Safflower – JSF-1, JSF- 7 (spineless), JSF-73, Sharda
Sunflower – Morden, Surya and Manjira
Sesame – Bhadeli, TKG-22, and RT-46
Rajgira –Co-1 and Co-2.
Castor- Gauch, Varuna.
Fodder crops – Barley, oats ,Maize- African tall, safflower and sunflower.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madhya Pradesh</td>
<td>Betul (Southern Madhya Pradesh)</td>
<td>High runoff and High yield gap</td>
</tr>
<tr>
<td></td>
<td>Dewas, Jhabua and Ratlam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Central West Madhya Bharat Plateau)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indore (Narmada valley)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sidhi (Vindhian Scraplands)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shivapure (Madhya Bharat Plateau)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Betul</th>
<th>Dewas</th>
<th>Jhabua</th>
<th>Ratlam</th>
<th>Indore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot dry sub humid</td>
<td>Hot dry moist sub humid</td>
<td>Hot moist semi arid</td>
<td>Hot moist semi arid</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils–85%; Vertisols – 15 % Shallow and medium loamy to clayey black soils Deep clayey black soils</td>
<td>Vertic soils–100% Deep clayey black soils Shallow black soils Medium and deep clayey black soils Shallow loamy black soils</td>
<td>Vertic soils–100% Deep clayey black soils Shallow black soils</td>
<td>Vertic soils–100% Deep clayey black soils Shallow black soils</td>
<td>Vertic soils–100% Deep clayey black soils Shallow black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1129</td>
<td>1079</td>
<td>768</td>
<td>1078</td>
<td>1054</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1370</td>
<td>1707</td>
<td>1610</td>
<td>1521</td>
<td>1814</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>150 – 180</td>
<td>120 – 180</td>
<td>120 – 150</td>
<td>120 – 150</td>
<td>120 – 150</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Straighten the gullied portion in the farmers’ fields through earth moving machinery to reduce the length of gully allowing safe passage for the run off water. It brings additional area under cultivation through reclamation process.
- Construct percolation tank for increasing ground water recharge and enhancing ground water storage to provide extra irrigation to the crops.
• Use gabion as an inlet and outlet of water harvesting tank without any structural failure to trap silt on the upstream sit to increase life of water storage bodies.

• Construct water-harvesting tank to retrain the excess run off from the watershed area to use stored water for irrigation purpose.

• Silpaulin (a plastic material) of 90 – 120 gsm has been found effective lining material for farm ponds used for water harvesting purposes.

• Use vegetative barriers to strengthen the mechanical bunds at suitable vertical intervals in order to reduce run off in associated soil losses from the cultivated fields.

• Develop a sort of terracing break the continuity of undulating slope to reduce the chances of degrading cultivated fields in to gullied one.

• Use mould board plough for deep tillage to increases the productivity of kharif crops and ensure sowing of rabi crop through better moisture conservation and eradication of infested weeds.

• Ensure drainage line treatment for providing safe disposal of excess run off and providing more opportunity time in order to reduce erosive velocity.

• Mould board plough, used for deep tillage to increase the productivity of kharif crops and enhance sowing of rabi crops through better moisture conservation and eradication of infested weeds.

• Graded bunds alone and / or along with vegetative barriers at vertical intervals of 50 cm proves most effective in controlling soil erosion and nutrient losses on soils having slope up to 2 per cent.

• Off-season shallow tillage is important not only in controlling the weeds but also in helping entry of rain water.

• Develop a sort of terracing to break the continuity of undulating slope to reduce the changes of degrading cultivated fields in to gullied one.

• Provide in situ soil mulch by operating bullock drawn dora to fill up the cracks, to conserve the soil moisture and to achieve weed control. Straw as mulch @ 4-5 t/ha in between the rows of crop plants to minimize evaporative losses, moisture conservation and to increase moisture efficiency in rabi crops.

Crop management
• Varieties : JM - 8, JM - 12, Navjot, Chandan 3, Chandan Safed, NLD, Ganga - 5, Deccan - 107, Deccan - 109, KH - 510

• Seed rate: Composites 18 -20 kg /ha

 Hybrids: – 16 – 18 kg /ha

• Planting Pattern: 60 x 20 cm, 75 x 20 cm

• Nutrient management
 • Composites: 80 kg N + 60 kg P₂O₅ + 20 kg K₂O/ha. Apply 50 % N as basal and 50 % in two splits at knee height and tasseling

 • Hybrids: 100 kg N + 60 kg P₂O₅ + 20 kg K₂O/ha. Apply 50 % N as basal and 50 % in two splits at knee height and tasseling

Some other important practices
• Seed treatment with Thiram @ 3 g/kg seed.
Suitable cropping systems

- Monocropping of Maize (for cobs) in *kharif* in shallow black soils
- Maize + chickpea + safflower in deep black soils

Farm Implements / tools

- Suitable Implements for seedbed preparations
 - Meston Plough
 - Iron Bakhar

- Suitable Implements for sowing operations
 - Mahakal Dufan
 - Mahakal Tifan and
 - Sarta attachment for intercropping

- Suitable Implements / Tools for interculture operations
 - Hand dora (small blade harrow)
 - Bullock drawn dora (small blade harrow with wooden beam)
 - Indore ridger

Alternate farming systems

- Trees on crop lands
- **Fodder/green biomass:** *Dichrostachys cineria, Albizzia amara, Faidherbia albida, Hardwickia binata, Cassia, Leucaena leucocephala, Albizia lebbeck*
- **Fruit:** *Ber, Pomegranate, Mango, Fig, Tamarind*
- **Medicinal & Aromatic Plants:** *Withamnia somnifera, Rauwolfia serpentina, Vetiveria zyzanoides, Palma rosa, Liquorice.*
- **Vegetables:** Chillies, Okra, Watermelon, Cowpea, Cluster bean,
 - Amaranth, round melon.
- **Animal component:** Female Cattle, Male Cattle, Female Buffaloes, Goat and Poultry

Contingent Planning

If monsoon is delayed or there is failure of timely sown crops due to intermittent droughts then for delayed sowing improved crops and their varieties may be chosen for planting, as given below:

<table>
<thead>
<tr>
<th>Period</th>
<th>Crops and their varieties recommended for planting</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) 15th to 31st July</td>
<td>Maize - (short duration varieties like Navjot, sathi, etc.).
Pigeonpea - (under deep soils preferred varieties ICPL-151, T-21, Kh-2, ICPL-87, ICPL-88039 etc.).
Sunflower – Morden, Surya, Manjira and any other hybrids
Sesame – Bhadeli, TKG-22, TKG-37 etc.
Cow pea – Pusa Komal and Pusa Baisakhi.
Castor – Gauch and Varuna.
Fodder crops – Sorghum sudanensis, Maize- African tall, Dinanath grass and Pearl millet etc.</td>
</tr>
</tbody>
</table>
Districtwise Promising Technologies for Rainfed Cereals based Production System in India

(B) 1st to 15th August

Sunflower – Morden, Surya, Manjira and any of the hybrids.
Sesame – Bhadeli, TKG-22, TKG-37 etc.
Cowpea – Pusa Komal and Pusa Baisakhi.
Rajgira (Amaranthus)- Co-1 and Co-2.
Castor- Gauch, Varuna.
Fodder crops – Sorghum Sudanensis, Maize- African tall,
Dinanath grass and Pearl millet etc.

(C) 15th to 31st August

Safflower – JSF-1, JSF- 7 (spineless), JSF-73, Sharda
Sunflower – Morden, Surya and Manjira
Sesame – Bhadeli, TKG-22, and RT-46
Rajgira –Co-1 and Co-2.
Castor- Gauch, Varuna.
Fodder crops – Barley, oats, Maize- African tall, safflower and sunflower

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madhya Pradesh</td>
<td>Sidhi (Vindhian Scraplands)</td>
<td>High run off and High yield gap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Sidhi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot dry sub humid</td>
</tr>
<tr>
<td>Soils</td>
<td>Ustals/Ustolls – 75%; Vertic soils – 25% Deep loamy to clayey mixed red and black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1174</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1468</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>150 – 180</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Broadbed furrow
- Contour farming
- Inter-plot water harvesting
- Raised bed and sunken system

Crop management

- **Varieties** : Local, Ganga – 5
- **Seed rate** : 18 – 20 kg/ha chandan safed
- **Planting pattern** : 60 x 20 cm
- **Nutrient management**
 - Composites: 80 kg N + 60 kg P₂O₅ + 20 kg K₂O/ha. Apply 50 % N as basal and 50 % in two splits at knee height and tasseling
 - Hybrids: 100 kg N + 60 kg P₂O₅ + 20 kg K₂O/ha. Apply 50 % N as basal and 50 % in two splits at knee height and tasseling
Suitable cropping system

- Maize + chickpea / safflower

Alternate farming systems

- **Agro – hortisystem**: Mango + Pea / Berseem (green fodder) / Wheat / gram / soybean
- **Silvi – pastoral system**: Teak + sudan grass
- **Fodder/green biomass**: *Leucaena leucocephala*, *Albizia amara*, *Dichrostachys cineria*, *Melia azadirach*, *Hardwickia binata*, *A.lebbeck*
- **Fruit**: Mango, Ber, Guava, Tamarind, Karonda
- **Medicinal & Aromatic Plants**: Safeed musli, *Palma rosa*, *Withania somnifera*, *Papaver somniferum*, *Vetiveria zyzanoides*
- **Vegetables**: Brinjal, Chilli, Cowpea, Okra, Bottle gourd, Round melon.
- **Animal component**: Female Cattle, Male Cattle, Female Buffaloes, Goats

Contingent planning

June

1) Sole crop
 - a) Sorghum (CSH-5, JS-1041)
 - b) Green gram (K-850)
 - c) Blackgram (JU-2, PDU-4)
 - d) Groundnut (Jawahar Jyoti, M-13)

2) Inter crop
 - a) Sorghum + pigeonpea (2:1)
 - b) Soybean + pigeonpea (2:1)

July

1) Sole crop
 - a) Rice (IR-50, JR-345)
 - b) Kodo (JK-155, JK-76, JK-136)
 - c) Sorghum (CSH-5)
 - d) Pigeonpea (NPWR-15, JA-4, Asha)
 - e) Groundnut (Jyoti, M-12, Exotic 1-1)

2) Inter crop
 - a) Sorghum + pigeonpea (2:1)
 - b) Soybean + pigeonpea (2:1)

August

- Castor (Aruna)
- Pigeonpea (No.148)

October

- a) Wheat (JW-17, C-306)
- b) Gram (JG-321, JG-315)
- c) Linseed (JL-23, R-552)
- d) Barley (Karan-4, Jyoti)
- e) Lentil (JL-1, Malika)
State | District | Region
--- | --- | ---
Madhya Pradesh | Shivapuri (Madhya Bharat Plateau) | High run off and High yield gap

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Shivapure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 100%</td>
</tr>
<tr>
<td></td>
<td>Deep loamy and clayey mixed red and black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1179</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1498</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120 – 150</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Sowing across the slope and ridging later
- Compartmental bunds for raising crops on conserved soil moisture

Crop management

- **Varieties**: Local, Ganga – 5
- **Seed rate**: 18 – 20 kg/ha chandan safed
- **Planting pattern**: 60 x 20 cm
- **Nutrient management**
 - Composites: 80 kg N + 60 kg P₂O₅ + 20 kg K₂O/ha. Apply 50 % N as basal and 50 % in two splits at knee height and tasseling
 - Hybrids: 100 kg N + 60 kg P₂O₅ + 20 kg K₂O/ha. Apply 50 % N as basal and 50 % in two splits at knee height and tasseling

Suitable cropping system

- Maize + chickpea /safflower

Alternate farming systems

- **Fodder/green biomass**: Leucaena, Melia azadirachta, Dichro stachys cineraria, Albizzia amara, A.lebbeck, Hardwickia binata, A.nilotica
- **Fruit**: Emblica officinalis (amla), Guava, Ber, Mango
- **Medicinal & Aromatic Plants**: Rauvolfia serpentina, Vetivera zyzanoides, Palma rosa, Safed musli, Asvagandha
- **Vegetables**: Bottle gourd, Brinjal, Tomato, Chillies, Brinjal, Cowpea, Okra
- **Animal component**: Female Cattle, Male Cattle, Female Buffaloes, Goat and Poultry
All India Coordinated Research Project for Dryland Agriculture (AICRPDA)

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madhya Pradesh</td>
<td>Mandla (Satapura ranges)</td>
<td>High runoff and Medium yield gap</td>
</tr>
</tbody>
</table>

Agro-geographic setting
- **Climate**: Hot moist sub humid
- **Soils**: Vertic soils – 85%; Vertisols – 15%
- **Soil type**: Shallow to deep loamy to clayey mixed red and black soils
- **Annual rainfall (mm)**: 1425
- **Potential evapotranspiration (mm)**: 1304
- **Length of growing period (LGP) / moisture availability period (days)**: 180 – 210

Soil and water conservation
- Broadbed furrow
- Contour farming
- Inter-plot water harvesting
- Raised bed and sunken system

Crop management
- **Varieties**: Local, Ganga – 5
- **Seed rate**: 18 – 20 kg/ha chandan safed
- **Planting pattern**: 60 x 20 cm
- **Nutrient management**
 - Composites: 80 kg N + 60 kg P₂O₅ + 20 kg K₂O/ha. Apply 50 % N as basal and 50 % in two splits at knee height and tasseling
 - Hybrids: 100 kg N + 60 kg P₂O₅ + 20 kg K₂O/ha. Apply 50 % N as basal and 50 % in two splits at knee height and tasseling

Suitable cropping system
- Maize + chickpea /safflower

Alternate farming systems
- **Agro – hortisystem**: Mango + pea / Berseem (green fodder) / Wheat / chickpea / soybean
- **Silvi – pastoral system**: Teak + sudan grass
- **Fodder/green biomass**: Leucaena leucocephala, Albizia amara, Dichrostachys cineria, Melia azadirachta, Hardwickia binata, A.lebbeck
- **Fruit**: Mango, Ber, Guava, Tamarind, Karonda
- **Medicinal & Aromatic Plants**: Safed musli, Palma rosa, Withania somnifera, Papaver somniferum, Vetiveria zyzyanoides
- **Vegetables**: Brinjal, Chilli, Cowpea, Okra, Bottle gourd, round melon.
- **Animal component**: Female Cattle, Male Cattle, Female Buffaloes and Goats
Contingent planning

June

1) Sole crop
 a) Sorghum (CSH-5, JS-1041)
 b) Green gram (K-850)
 c) Blackgram (JU-2, PDU-4)
 d) Groundnut (Jawahar Jyoti, M-13)

2) Inter crop
 a) Sorghum + pigeonpea (2 : 1)
 b) Soybean + pigeonpea (2 : 1)

July

1) Sole crop
 a) Rice (IR-50, JR-345)
 b) Kodo (JK-155, JK-76, JK-136)
 c) Sorghum (CSH-5)
 d) Pigeonpea (NPWR-15, JA-4, Asha)
 e) Groundnut (Jyoti, M-12, Exotic 1-1)

2) Inter crop
 a) Sorghum + pigeonpea (2 : 1)
 b) Soybean + pigeonpea (2 : 1)

August

- Castor (Aruna)
- Pigeonpea (No.148)

October

- Wheat (JW-17, C-306)
- Gram (JG-321, JG-315)
- Linseed (JL-23, R-552)
- Barley (Karan-4, Jyoti)
- Lentil (JL-1, Malika)

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madhya Pradesh</td>
<td>Guna (North West)</td>
<td>High runoff and High yield gap</td>
</tr>
<tr>
<td>Shahdol</td>
<td>(Eastern Madhya Pradesh, Madhya Pradesh)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Guna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot dry moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 100%</td>
</tr>
<tr>
<td></td>
<td>Deep loamy and clayey mixed red and black soils</td>
</tr>
<tr>
<td></td>
<td>Medium and deep clayey black soils</td>
</tr>
<tr>
<td></td>
<td>Shallow loamy black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1222</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1511</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120 – 180</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Broad bed furrow for soybean
- Gabion structures in waterways
- Graded border strips
All India Coordinated Research Project for Dryland Agriculture (AICRPDA)

- Sowing across the slope and ridging later
- Compartmental bunding
- Mulching

Crop management
- **Varieties**: Local, Ganga – 5
- **Seed rate**: 18 – 20 kg/ha
- **Planting pattern**: 60 x 20 cm
- **Nutrient management**
 - Composites: 80 kg N + 60 kg P₂O₅ + 20 kg K₂O/ha. Apply 50 % N as basal and 50 % in two splits at knee height and tasseling
 - Hybrids: 100 kg N + 60 kg P₂O₅ + 20 kg K₂O/ha. Apply 50 % N as basal and 50 % in two splits at knee height and tasseling

Suitable cropping system
- Maize + chickpea /safflower

Alternate farming systems
- **Fodder/green biomass**: *Dichrostachys cineraria, Albizzia amara, Faidherbia albida, Hardwickia binata, Cassia, Leucaena leucocephala, Albizzia lebbeck*
- **Fruit**: Ber, Pomegranate, Mango, Fig, Tamarind
- **Medicinal & Aromatic Plants**: *Withamnia somnifera, Rauvolfia serpentina, Vetiveria zyzanoides, Palma rosa, Liquorice.*
- **Vegetables**: Chillies, Okra, Watermelon, Cowpea, Cluster bean, Amaranth, round melon.
- **Animal Component**: Female and male Cattle, Female Buffaloes, Goat, Poultry

Shahdol (Eastern Madhya Pradesh, Madhya Pradesh)

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Shahdol</th>
<th>High run off and High yield gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot dry sub humid</td>
<td></td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 60%; Ustalf/Ustolls – 40%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deep loamy to clayey mixed red and black soils</td>
<td></td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1335</td>
<td></td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1342</td>
<td></td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>150 – 180</td>
<td></td>
</tr>
</tbody>
</table>

Soil and water conservation
- Broadbed furrow
- Contour farming
- Inter-plot water harvesting
- Raised bed and sunken system
Crop management

- **Varieties**: Local, Ganga – 5
- **Seed rate**: 18 – 20 kg/ha chandan safed
- **Planting pattern**: 60 x 20 cm
- **Nutrient management**
 - Composites: 80 kg N + 60 kg P$_2$O$_5$ + 20 kg K$_2$O/ha. Apply 50 % N as basal and 50 % in two splits at knee height and tasseling
 - Hybrids: 100 kg N + 60 kg P$_2$O$_5$ + 20 kg K$_2$O/ha. Apply 50 % N as basal and 50 % in two splits at knee height and tasseling

Suitable cropping system

- Maize + chickpea /safflower

Alternate farming systems

- **Fodder/green biomass**: Leucaena leucocephala, Albizzia amara, Dichrostachys cineria, Melia azadirachta, Hardwickia binata, A.lebbeck
- **Fruit**: Mango, Ber, Guava, Tamarind, Karonda
- **Medicinal & Aromatic Plants**: Safed musli, Palma rosa, Withania somnifera, Papaver somniferum, Vetiveria zyzanoides
- **Vegetables**: Brinjal, Chilli, Cowpea, Okra, Bottle gourd, round melon.
- **Animal Component**: Female Cattle, Male Cattle, Female Buffaloes, and Goats
MAHARASHTRA

In Maharashtra there is one district viz. Dhule under low runoff and low yield gap region.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maharashtra</td>
<td>Dhule (Western Maharashtra plateau)</td>
<td>Low runoff and Low yield gap</td>
</tr>
</tbody>
</table>

Agro-geographic setting
- Dhule

Climate
- Hot semi arid

Soils
- Vertic soils – 65 %; Vertisols – 35 %
- Shallow and Medium loamy
- Medium and deep clayey black soils

Annual rainfall (mm)
- 738

Potential evapotranspiration (mm)
- 1713

Length of growing period (LGP)/moisture availability period (days)
- 120 – 150

Soil and water conservation
- On sloppy land contour cultivation along vegetative hedge of vetiver or *Leucaena* at 0.5 m vertical interval.
- Broad bed furrows
- Compartmental bunding
- Sowing across the slope

Crop management
- **Varieties**: DHM-101, Ganga
- **Seed rate**: 18 kg/ha
- **Planting pattern**: 60 x 25 cm
- **Nutrient management**: 75 kg N + 40 kg P₂O₅ /ha.
Tool/Implement Cost Operation carried

1) Tractor multi crop planter Rs.22800/- Sowing of rabi sorghum was done on farmer’s field. Minor modifications made in the original design for adoption of the machine in dryland region. Awareness was created amongst the farmers by conducting demonstrations on farmer’s field. The farmers were satisfied with operation of this machine.

2) Bullock drawn Jyoti Planter. Rs.7500/- The field trials were conducted and the machine is recommended for sowing the crops of dryland region.

3) Weeders developed by Maharashtra Agro Industries Development Corporation Ltd. (MAIDC) Rs.410/- These weeders were tested on farmer’s field and identified for weeding and interculturing in row crops.

4) Tractor drawn a) Single bottom reversible plough. Rs.18500/- b) Double bottom reversible plough. Rs.23600/- Tested on farmers’ field for ploughing and identified for ploughing operations in dryland region as the field operation was effective and economical.

5) Bund former Rs.1050/- Bund formers were tested and found suitable for compartmental bunding.

6) Baliram plough Rs.2500/- Identified for moisture conservation practices like ridges and furrows and compartmental bunding.

7) Kopergaon bullock drawn two-bowl seed drill. Rs.9000/- The local made seed drill named “Kopergaon seed drill” is operated on the field for sowing crops like sorghum, pearl millet, pigeon pea etc. and identified for sowing of the crops of dryland region.

Suitable cropping systems

• Maize - safflower

Farm Implements / tools

Alternate farming systems

• Silvipasture: Leucaena + Marvel –8
• Alley cropping: Ber (20 m alleys) + Pearl millet + Pigeon pea for shallow soils
• Fodder: Maize (African Tall), Oats (Kent), Stylo hamata
• Fodder/ green biomass: Dalbergia sissoo, Albizzia lebbeck, Anogeissus latifolia, Sesbania, Stylo Marvel –8 grass
• Fruit: Ber, Custard apple, Pomegranate, amla+kharif spreading crops
• Medicinal/ Aromatic Plants: Catharanthus roseus, Palma rosa, Vetiveria zyzanoides, Rose, Geranium.
• Vegetables: Onion, Tomato, Okra, Cowpea, Cluster bean, Drumstick
• Animal component:
 • Cow breeds: Gir, Jersey
 • Poultry: White Leghorn
 • Rams
 • Male/ female cattle, female buffaloes, sheep, goat
Alternate land use system

- Lands < 22.5 cm depth of soil should be cultivated with Agroforestry and dryland horticulture including Ber, Custard apple, Aonla, Wood apple, Jambhul etc.
- On light soils Ber cultivation at 20x5 m spatial arrangement associated with pearl millet + pigeon pea (2:1) intercropping within two rows of Ber plantation was recommended.
- Silvipastoral system of Subabul + Marvel-8 with cutting of the alternate trees at 7th year onwards for fuel is also recommended.
- For productivity increment in scarcity area the pearl millet + pigeon pea (2:1) intercropping or Ber (5x5 m) + moth bean (8 lines) is advocated.

Contingent Planning

Mid season corrections during kharif with soil having depth upto 45 cm for the scarcity zone.

2nd Fortnight of June All kharif crops
1st Fortnight of July Pearl millet, Setaria, Groundnut, Castor, Pigeon pea, Horse gram,
 Intercropping of Pearl millet + pigeon pea (2:1),
 Cluster bean + pigeon pea (2:1),
 Cluster bean + castor (2:1),
 Sunflower + pigeon pea (2:1)
2nd Fortnight of July Sunflower, Pigeon pea, Horse gram, Setaria,
 Castor, Pearl millet (ergot resistant),
 Intercropping of Sunflower + pigeon pea (2:1)
1st Fortnight of August Sunflower, Pigeon pea, Castor, Horse gram,
 Sunflower + pigeon pea (2:1)
2nd Fortnight of August Sunflower, Pigeon pea, Castor,
 Sunflower + pigeon pea (2:1)
1st Fortnight of September Sorghum for fodder
2nd Fortnight of September Rabi sorghum, Safflower, Sunflower
1st Fortnight of October Rabi sorghum, Safflower, Chick pea, Sunflower
2nd Fortnight of October Chick pea, Sunflower, Rabi sorghum.
1st Fortnight of November Chick pea, Sunflower.
ORISSA

In Orissa there are four districts viz. Koraput, Kalahandi, Ganjam and Phulbani under high runoff and high yield gap region.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orissa</td>
<td>Koraput (Southern Orissa)</td>
<td>High runoff and High yield gap</td>
</tr>
<tr>
<td></td>
<td>Kalahandi (South West Orissa)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ganjam and Phulbani (Eastern ghats)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Koraput</th>
<th>Kalahandi</th>
<th>Ganjam</th>
<th>Phulbani</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist sub humid</td>
<td>Hot moist sub humid</td>
<td>Hot (moist/ dry) sub humid</td>
<td>Hot moist sub humid</td>
</tr>
<tr>
<td></td>
<td>Deep laomy red and lateritic soils</td>
<td>Deep laomy red and lateritic soils</td>
<td>Medium to deep loamy red and lateritic soils</td>
<td>Deep loamy to clayey coastal and deltaic alluvium derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1671</td>
<td>1511</td>
<td>1311</td>
<td>1425</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1630</td>
<td>1524</td>
<td>1662</td>
<td>1642</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>180 – 210</td>
<td>180 – 210</td>
<td>180 – 210</td>
<td>180 – 210</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Bench terracing
- Compartmental bunding
- Graded border strips
Crop management

- **Varieties**: Navjot, DHM - 103
- **Seed rate**: 15 kg/ha
- **Planting Pattern**: 60 x 30 cm
- **Nutrient management**
 - 80 kg N + 40 kg P₂O₅ + 40 kg K₂O/ha. P and K as basal. 25% N as basal, 50% N at 21 days after sowing and 25% N at 6-7 weeks after germination

Suitable cropping systems

Uplands:
- Maize (Navjot) – toria (PT 303/M-27)
- Maize (Navjot) + cowpea (SGL-1, Arka Kamal)- rapeseed mustard (PT-303, M-27).
- Maize (Navjot) + pigeonpea (T-21, R-60):
 Short duration maize and long duration pigeonpea are grown in uniform alternate rows in 1:1 row ratio or paired rows of maize are alternated with paired rows of pigeonpea in 2:2 row ratio. Maize is harvested before canopy development starts in pigeonpea. In this system, 100% population of each of the sole crop is maintained.
- Maize (Navjot) + cowpea (SEB-2):
 Two rows of low-trailing cowpea are grown between paired rows of maize with set specification 30-90-30cm. Green pods of cowpea are harvested during 60-70 days after germination.
- Maize (Navjot) + cowpea (SGL-1, Arka Kamal):
 Maize and non-trailing cowpea is grown in 30 cm apart uniform rows alternately. Green pods of cowpea are harvested within 50-60 days after germination. Green biomass of cowpea is used as mulch-cum-manure between rows of maize. Cowpea may be harvested for grain purpose at 70 days after germination.
- Maize (Navjot) + Runner bean (local):
 Runner bean is planted in basins prepared with 90 cm spacing. In each basin, 2 runner bean plants are maintained. Two rows of maize are planted in 90 cm spacing between 2 basins of runner bean. Maize acts as live-staking material for runner bean.

Alternate crops:
- Mesta – AMV –1, AS –7
- Safflower – S-2-27, A-300
- Pearl millet – BPC-39, IP-417
- Soybean – JS –1, Punjab –1
- Turmeric – Sudarshan
- Ginger – Nadia
Farm Implements / tools

- Hand Hoe

Alternate Farming systems

- **Non-arable wastelands:**
 - Tree farming (Sal, Teak)
 - Silvi-pastoral (Shisham/Subabul/Gambar + Stylo/Cenchrus/mixture)

- **Arable wastelands:**

- **Agri-horticulture:**
 - Fruit crops (mango/citrus/sapota/pomogranate/custard apple/aonla/litchi/jackfruit/phalsa) + field crops (pulses/oilseeds). Hybrid mango varieties viz. Pusa Amrapalli and Pusa Mallika are becoming increasingly popular in the zone.
 - Sweet potato + maize/castor (spacing 80 x 25 cm)
 - Yam (100 x 60 cm) + maize/castor
 - Tapioca (100 x 100 cm) + maize/castor
 - Colocassia 980 x 25 cm) + maize/castor
 - Alley cropping: Subabul (4 m interval) + groundnut/sesame/cowpea (grain)
 - *Leucaena* + turmeric/ginger

- **Fodder/green biomass:** *P. pinnata, Albizzia sps, Cassia siamea, Grevellea robusta, D. sissoo, Azadirachta indica*

- **Fruit:** Mango, Jackfruit, Guava, Lime

- **Medicinal & Aromatic Plants:** *Vetiveria zyzanoides, Cymbopogan flexuosus, Palma rosa, Solanum viarum, Cinnamon, Citronella java*

- **Vegetables:** Bottle gourd, Brinjal, Ridge gourd, Watermelon, Long melon, Bitter gourd, Tomato

- **Animal Component:** Female cattle, Male cattle, Goat

Contingent crop planning

- **Normal Season:**

- **Rice:**
 - Very early group (less than 95 days):
 - Heera, Rudra, ZHU 11-26, Vandana
 - Early group (95 days to 115 days):
 - Pathara, Khandagiri, Udayagiri, Ghanteswari & Parijat
 - Early medium (115 days to 120 days):
 - Sarathi & Bhoi
 - Medium duration (125 to 145 days):
 - Lalat, IR-64, Konark, Gajapati, Surendra, Jajati, Swarna, MTU-1001 and Padmini
All India Coordinated Research Project for Dryland Agriculture (AICRPDA)

Late duration:
- Utkalaprava, Gayatri, Savitri, Prachi, Ramachani, Mahanadi and Indrabati
- Finger millet: Dibyasinha, Nilachala, Bhairabi and Subhra
- Maize: Navjot, Vijaya, DHM-103 and Ganga-5
- Greengram: PDM-54, K-851, Dhauli and TARM-2
- Blackgram: Pant U-30, T-9 and Sarala
- Pigeonpea: UPAS-120, R-60, T-21 and S-5
- Cowpea: SEB-2, SGL-1, Arka Kamal
- Horsegram: Urmi and Local
- Groundnut: Smruti (OG 52-1), JL-24, ICGS-11 and AK 12-24
- Castor: Aruna, DCH-177 and DCH-30
- Rapeseed & Mustard: PT-303, M-27, Parvati and Anuradha
- Sesame: Vinayak, Uma, Usha and Prachi
- Niger: Deomali (GA-10), IGP-76 and Phulbani Local
- Linseed: Kiran, Laxmi-27, Pusa-3, Padmini
- Sunflower: Morden
- Cotton: MCU-5, NHH-44, Somanath, Savita and Bunny
- Ginger: Vardhan, China and Nadia
- Turmeric: Sudarsan, Suguna, Subarna and Rajendra Horti-5.
- Yam: Hatikhoja, Srikirti, Srirupa

ABERRANT WEATHER:
- Upland
 - Early season drought/Delay in onset of monsoon:
 - When upland rice is completely damaged, the crop may be cut down for supplying straw to the cattle. Non-paddy crops viz. finger millet (Subhra, Bhairabi, Dibyasinha and Godavari), Greengram (K 851, PDM-11 and PDM-54), blackgram (T-9, Sarala and Pant U-30), Cowpea (SEB-2, SGL-1, Arka Kamal), horsegram (Urmi), ricebean (RBL 6), sesame (Usha, Uma) and castor (Aruna, DCS-9), niger (IGP-76 and Deomali) or sunflower (Morden) should be taken. Drought tolerant varieties of crop(s)/cropping system(s) should be taken up. The crop/variety should be selected basing on available effective growing season.
 - Mid-season drought:
 - Weeding and hoeing should be done in all the crops except groundnut in flowering stage. Weeds in groundnut should be cut or uprooted not to interfere in pegging and pod formation. Hoeing creates a soil mulch and decreases moisture loss from the soil. Uprooted weeds should be used as mulch between crop rows.
 - Foliar spraying of 2% urea in upland rice and finger millet gives good results. For this, 200 g of urea is mixed with 10 litre of water and sprayed on the foliage of the crop. Plant protection chemicals
may be mixed with urea solution to minimize the cost of spraying. In a single spray 10kg/ha of urea is applied through 500 litre solution.

- Excess plants in the crop row should be thinned to reduce moisture loss from the soil.
- Use of tender twigs of Leucaena, Glyricidia sepium, Cassia siamea and Mimosa invisa and plants of sunhemp as mulch-cum-manure reduces evaporation loss from the soil.
- Spraying of planofix 10 ppm at 45 days after sowing and 20 ppm at flowering in cotton to prevent fruit drop.

Late season drought:
- Harvested rainwater should be recycled as life saving irrigation.

Medium and low land:

- **Direct sown rice:**
 - Re-sowing of rice is needed if plant population is less than 50%. Line sowing of pre-germinated seeds of rice (125 days duration) should be done. Nursery for comparatively shorter duration rice varieties may be done.
 - If plant population is more than 50% and ‘beushaning’ is not possible, weeds are uprooted by manual means. Even distribution of plants (Khelua) should be taken up immediately by using local tools. Tillers with roots may be detached from hills with profuse tillering for planting in gappy areas. Urea solution (2%) may be sprayed to improve crop growth.

- **Transplanted rice:**
 - If puddling and transplanting is not possible, seedlings should not be uprooted. Weeds are removed to keep the nursery beds clean. Adequate plant protection measures are taken to protect the seedlings from disease and pest attack.
 - When rainfall occurs, puddling is done by tractor drawn power tiller or rotovator for better puddling. Close planting of 45-day old seedlings in case of medium duration varieties and 60-70 day old seedlings in late varieties should be done. There should be 60-65 hills/m². Instead of 2 to 3 seedlings, 4 to 5 seedlings/hill should be planted. Adequate fertilizer should be applied at transplanting.
 - When seedlings are insufficient, seedlings may be raised by dapog method.
RAJASTHAN

In Rajasthan there are four districts viz. Bhilwara, Udaipur, Dungarpur and Tonk under low runoff and low yield gap region, two districts viz. Chittorgarh and Kota under medium runoff and medium yield gap region and three districts viz. Banswara, Bundi and Jalawar under medium runoff and high yield gap region. The trends in area, production and productivity of maize in Rajasthan (1980 - 2005) are shown in Fig. 4.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajasthan</td>
<td>Bhilwara (Eastern Rajasthan Uplands) Udaipur and Dungarpur (Southern Rajasthan) Tonk (Central East Rajasthan)</td>
<td>Low runoff and Low yield gap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Bhilwara</th>
<th>Udaipur</th>
<th>Dungarpur</th>
<th>Tonk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot dry semi arid</td>
<td>Hot dry semi arid</td>
<td>Hot dry semi arid</td>
<td>Hot dry semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 100% Pssaments – 30 %; Deep loamy grey brown and alluvium - derived soils</td>
<td>Vertic soils – 70 %; Deep loamy grey brown and alluvium - derived soils</td>
<td>Vertic soils – 100% Deep loamy grey brown and alluvium - derived soil</td>
<td>Inceptisols – 100% Deep loamy grey brown and alluvium - derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>658</td>
<td>661</td>
<td>715</td>
<td>703</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1559</td>
<td>1380</td>
<td>1503</td>
<td>1597</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>90 – 120</td>
<td>90 - 120</td>
<td>90 – 120</td>
<td>90 – 120</td>
</tr>
</tbody>
</table>

Soil and water conservation

- More emphasis on in situ water conservation
- Increasing soil infiltration capacity and reducing soil crusting problem
- Contour furrowing
- Absorption terracing
- Contour trenches
Fig. 4. Trends in Area, Production and Productivity of Maize in Rajasthan (1980-2005)
• Inter-row water harvesting
• Inter-plot water harvesting of 1:1 cropped to un-cropped land
• Dead furrows at 3.6 m interval

Crop management
• Varieties: PEHM-2, Navjot, Surya
• Seed rate: 25 kg/ha
• Planting Pattern: 60 cm rows
• Nutrient management
 • 50 kg N + 30 kg P₂O₅/ha and apply N in 2 splits ½ as basal and ½ at knee high stage
• Weed control: Apply Atrazine (0.5 kg/ha) followed by one interculture
• Some other important practices
 • Sowing of maize with compartmental bunding helps for in-situ soil moisture conservation
 • Sowing of maize in ridges is good practice during drought as well as excess rainfall

Suitable cropping systems
• Maize-rapeseed mustard on heavy soils with good rainfall
• Maize + blackgram (2:2 row ratio in paired planting 37 cm)
• Maize + pigeonpea (alternate rows at 30 cm)
• Maize + castor (1:1 row ratio)

Farm Implements / tools
• Arjia pora
• Dryland weeder

Alternate farming systems
• Trees on crop lands:
 • Marginal lands:
 • Silviculture: Acacia tortilis
 • LCC III: Alley cropping (Jatropha spp + Greengram)
 • LCC IV: Silvipastoral system: Prosopis cineraria + Cenchrus sp
 • Horti – Pastoral system: Ber + Cenchrus setigerus
• Fodder/green biomass: Alianthus excelsa, A.lebbeck, D.sissoo, A.indica, P.cineraria, Dichrostachys
• Fruit: Ber, Date palm, Jamun, Fig, Phalsa, Karonda
• Medicinal & Aromatic Plants: Plantago ovata, Cassia angustifolia, Safed musli, Papaver somniferum
• Vegetables: Clusterbean, Cowpea, Amaranth, round melon, Long melon
• Animal component: Female Cattle, Male Cattle, Female Buffaloes, Sheep and Goats
Contingent planning

- Good and normal rainfall
 - Grow large areas under improved varieties of cereals, pulses and oilseeds during *kharif* on heavy soils, conserve soil moisture during *kharif* and take a early *rabi* crop of mustard or chickpea.
 - Normal onset followed by long gaps in rainfall
 - Drought hardy crops with deep root system and low water requirement like sorghum, castor, pigeonpea, sesame should be preferred over maize.
 - Delayed onset of monsoon:
 - Grow early maturing pulses (greengram, blackgram), oilseeds (sesame) and fodder crops (sorghum + cowpea). Intercropping of maize + blackgram / pigeon pea, groundnut + sesame is recommended.
 - Early withdrawal of monsoon:
 - Conserve the soil moisture received during last season and grow early *rabi* crops like rapeseed mustard, chickpea, safflower etc.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajasthan</td>
<td>Chittorgarh and Kota (South East Rajasthan)</td>
<td>Medium runoff and Medium yield gap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Chittorgarh</th>
<th>Kota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot dry moist semi arid</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 100%</td>
<td>Vertic soils – 100%</td>
</tr>
<tr>
<td>Deep loamy grey brown and alluvium - derived soils</td>
<td>Deep clayey black soils</td>
<td></td>
</tr>
<tr>
<td>Deep clayey black soils</td>
<td>Shallow black soils</td>
<td>Shallow black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>885</td>
<td>842</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1556</td>
<td>1523</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>90 – 150</td>
<td>120 – 150</td>
</tr>
</tbody>
</table>

Soil and water conservation

- More emphasis on in situ water conservation
- Increasing soil infiltration capacity and reducing soil crusting problem
- Contour furrowing
- Absorption terracing
- Contour trenches
- Inter-row water harvesting
- Inter-plot water harvesting of 1:1 cropped to un-cropped land
- Dead furrows at 3.6 m interval

Crop management

- **Varieties**: PEHM-2, Navjot, Surya
• **Seed rate**: 25 kg/ha
• **Planting Pattern**: 60 cm rows
• **Nutrient management**
 • 50 kg N + 30 kg P₂O₅/ ha and apply N in 2 splits ½ as basal and ½ at knee high stage
• **Weed control**: Apply Atrazine (0.5 kg/ha) followed by one interculture

Some other important practices
• Sowing of maize with compartmental bunding helps for in-situ soil moisture conservation
• Sowing of maize in ridges is good practice during drought as well as excess rainfall

Suitable cropping systems
• Maize-rapeseed mustard- on heavy soils with good rainfall
• Maize + blackgram (2:2 row ratio in paired planting 37 cm)
• Maize + pigeonpea (alternate rows at 30 cm)
• Maize + castor (1:1 row ratio)

Farm Implements / tools
• Arjia pora
• Dryland weeder

Alternate farming systems
• **Trees on crop lands**
 • Marginal lands :
 • Silviculture: *Acacia tortilis*
 • LCC III : Alley cropping (Jatropha spp + Greengram)
 • LCC IV : Silvipastoral system: *Prosopis cineraria + Cenchrus sp*
 • Horti – Pastoral system: Ber + *Cenchrus setigerus*
• **Fodder/green biomass**: *Alianthus excelsa, A.lebbeck, D.sissoo, A.indica, P.cineraria, Dichrostachys*
• **Fruit**: Ber, Date palm, Jamun, Fig, Phalsa, Karonda
• **Medicinal & Aromatic Plants**: *Plantago ovata, Cassia angustifolia, Safed musli, Papaver somniferum*
• **Vegetables**: Clusterbean, Cowpea, Amaranthus, round melon, Long melon
• **Animal component**: Female Cattle, Male Cattle, Female Buffaloes, Sheep and Goats

Contingent planning
• Good and normal rainfall
 • Grow large areas under improved varieties of cereals, pulses and oilseeds during kharif on heavy soils, conserve soil moisture during kharif and take a early rabi crop of mustard or chickpea.
• Normal onset followed by long gaps in rainfall
 • Drought hardy crops with deep root system and low water requirement like sorghum, castor, pigeonpea, sesame should be preferred over maize.
Districtwise Promising Technologies for Rainfed Cereals based Production System in India

- Delayed onset of monsoon:
 - Grow early maturing pulses (greengram, blackgram), oilseeds (sesame) and fodder crops (sorghum + cowpea). Intercropping of maize + blackgram / pigeon pea, groundnut + sesame is recommended
- Early withdrawal of monsoon:
 - Conserve the soil moisture received during last season and grow early rabi crops like rapeseed mustard, chickpea, safflower etc.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajasthan</td>
<td>Banswara, Bundi and Jhalawar(South Rajasthan)</td>
<td>Medium runoff and High yield gap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Banswara</th>
<th>Bundi</th>
<th>Jhalawar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
<td>Hot dry semi arid</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 100%</td>
<td>Vertic soils – 100%</td>
<td>Vertic soils – 100%</td>
</tr>
<tr>
<td></td>
<td>Deep clayey black soils</td>
<td>Deep loamy grey brown and alluvium - derived soils</td>
<td>Deep clayey black soils</td>
</tr>
<tr>
<td></td>
<td>Shallow black soils</td>
<td>Deep clayey black soils</td>
<td>Shallow black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>938</td>
<td>768</td>
<td>1024</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1512</td>
<td>1554</td>
<td>1557</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120 – 150</td>
<td>90 – 150</td>
<td>120 – 150</td>
</tr>
</tbody>
</table>

Soil and water conservation
- More emphasis on in situ water conservation
- Increasing soil infiltration capacity and reducing soil crusting problem
- Contour furrowing
- Absorption terracing
- Contour trenches
- Inter-row water harvesting
- Inter-plot water harvesting of 1:1 cropped to un-cropped land
- Dead furrows at 3.6 m interval

Crop management
- **Varieties**: PEHM-2, Navjot, Surya
- **Seed rate**: 25 kg/ha
- **Planting Pattern**: 60 cm rows
- **Nutrient management**
 - 50 kg N + 30 kg P₂O₅/ ha and apply N in 2 splits ½ as basal and ½ at knee high stage
- **Weed control**: Apply Atrazine (0.5 kg/ha) followed by one interculture
Some other important practices

- Sowing of maize with compartmental bunding helps for *in-situ* soil moisture conservation
- Sowing of maize in ridges is good practice during drought as well as excess rainfall

Suitable cropping systems

- Maize- rapeseed mustard- on heavy soils Maize + blackgram (2:2 row ratio in paired planting 37 cm)
- Maize + pigeonpea (alternate rows at 30 cm)
- Maize + castor (1:1)

Farm Implements / tools

- Arjia pora
- Dryland weeder

Alternate farming systems

- **Trees on crop lands** :
 - Marginal lands :
 - Silviculture: *Acacia tortilis*
 - LCC III : Alley cropping (Jatropha spp + Greengram)
 - LCC IV : Silvipastoral system: *Prosopis cineraria* + *Cenchrus sp*
 - Horti – Pastoral system: Ber + *Cenchrus setigerus*
- **Fodder/green biomass**: *Alianthus excelsa*, *A.lebbeck*, *D.sissoo*, *A.indica*, *P.cineraria*, *Dichrostachys*
- **Fruit**: Ber, Date palm, Jamun, Fig, Phalsa, Karonda
- **Medicinal & Aromatic Plants**: *Plantago ovata*, *Cassia angustifolia*, *Safed musli*, *Papaver somniferum*
- **Vegetables**: Clusterbean, Cowpea, Amaranth, Round melon, Long melon
- **Animal component**: Female and male Cattle, Female Buffaloes, Sheep, Goats

Contingent planning

- **Good and normal rainfall**
 - Grow large areas under improved varieties of cereals, pulses and oilseeds during *kharif* on heavy soils, conserve soil moisture during *kharif* and take a early *rabi* crop of mustard or chickpea.
- Normal onset followed by long gaps in rainfall
 - Drought hardy crops with deep root system and low water requirement like sorghum, castor, pigeonpea, sesame should be preferred over maize.
- **Delayed onset of monsoon**:
 - Grow early maturing pulses (greengram, blackgram), oilseeds (sesame) and fodder crops (sorghum + cowpea). Intercropping of maize + blackgram / pigeon pea, groundnut + sesame is recommended
- **Early withdrawal of monsoon**:
 - Conserve the soil moisture received during last season and grow early *rabi* crops like rapeseed mustard, chickpea, safflower etc.
Districtwise Promising Technologies for Rainfed Cereals based Production System in India

UTTAR PRADESH

In Uttar Pradesh there are three districts viz. Kanpur, Farukkabad and Etah under medium runoff and medium yield gap region and six districts viz. Unnao, Lalitpur, Baduan, Jaunpur, Ballia and Saharahpur under medium runoff and high yield gap region.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uttar Pradesh</td>
<td>Kanpur (Ganga – Yamuna Doab)</td>
<td>Medium runoff and Medium yield gap</td>
</tr>
<tr>
<td></td>
<td>Farukkabad and Etah (Ganga – Yamuna Doab)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Kanpur (rural)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Inceptisols – 100%</td>
</tr>
<tr>
<td></td>
<td>Deep loamy alluvium - derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>882</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1661</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120 – 150</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Sowing across the slope and ridging later
- Compartmental bunds for raising crops on conserved soil moisture
- Contour farming
• Deep ploughing during summer followed by two cultivators
• Indigenous Water harvesting structures

Crop management

• **Varieties**: Ganga safed –2, Kanchan, Jankpuri
• **Seed rate**: 15 kg/ha
• **Planting pattern**

Farm Implements / tools

• Land preparation and sowing of seed and application of fertilizer by power tiller operated till plant machine

Alternate farming systems

• **Agri-horti system**: Guava + maize
• **Fodder/green biomass**: Leucaena, *D. sissoo*, Azadiracta indica, *Syzygium cumini*, Sesbania, Pongamia, *Cassia siamea*
• **Fruit**: Mango, Guava, Amla, Ber, Phalsa, Bael, Jamun.
• **Medicinal & Aromatic Plants**: *Papaver somniferum* *Palmosora*, *Vetiveria* *zyzandoides*, *Cymbopogon flexuosus*
• **Vegetables**: Tomato, Brinjal, Okra, Chilli, Amaranthus
• **Animal Component**: Female and male Cattle, Female Buffaloes, Sheep, Goat and Poultry

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Farukkabad</th>
<th>Etah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
<td>Hot semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Inceptisols – 100%</td>
<td>Inceptisols – 100%</td>
</tr>
<tr>
<td></td>
<td>Deep loamy alluvium - derived soils</td>
<td>Deep loamy alluvium - derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>871</td>
<td>741</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1488</td>
<td>1454</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120 – 150</td>
<td>90 – 120</td>
</tr>
</tbody>
</table>

Soil and water conservation

• Compartmental bunding after seedling emergence
• Contour farming
• Graded border strips
• Sowing across the slope and ridging later
• To mitigate early season drought, one extra inter cultivation along with straw mulch @ 5 t/ha is effective.
• One protective irrigation is only solution to control late season drought effect during summer.
• Deep tillage during summer and making compartmental bunding after seedlings emergence.
• Criss-cross ploughing by country plough after each effective rainfall.
• To mitigate early season drought, one extra inter cultivation along with straw mulch @5 t/ha is effective. One protective irrigation is only solution to control the adverse effect of late season drought.

Crop management
• Varieties: Ganga safed
• Planting pattern: 60 x 20 cm

Farm Implements / tools
• Dryland weeder is quite effective and economic in controlling the weeds in both seasons.

Alternate farming systems
• Agro hortisystem: Ber + greengram/ clusterbean/ cowpea for grain purpose
• Ber + pearl millet (fodder)
• Fodder/green biomass: A.indica, Leucaena, A. lebbeck, H. binata, Pongamia, C. siamea, Bauhinia
• Fruit: Mango, guava, Amla, Phalsa, Jamun, Karonda
• Medicinal & Aromatic Plants: Papaver somniferum, Palma rosa, Cymbopogan flexuosus, Vetiveria zyssonoides
• Vegetables: Tomato, Chillies, Brinjal, Okra, Bottle gourd, Amaranthus, Cowpea
• Animal component: Female Cattle, Female Buffaloes, Goat and Poultry

Contingent planning
• Kharif
 • Under normal rainfall:
 • Pearlmillet (Proagro-9402), pigeonpea (UPAS-120), greengram (K-851), clusterbean (RGC-197)
 • As the monsoon progresses
 • Rainfall upto end of July
 • Cereals and Pulses: Pearlmillet (Proagro-9402) intercropped with pigeonpea (UPAS-120, IPCL-87) Blackgram (T-9) and greengram (K-851). Pure crop of clusterbean, blackgram and greengram.
 • Oilseeds: Groundnut (Chandra) and sesame (Pratap) upto the end of third week of July
 • Rainfall upto third week of August
 • Cereals and pulses: Clusterbean (RGC-197) and transplanting of pearlmillet (MBH-163)
 • Rainfall upto end of August
 • Clusterbean as pure crop (RGC-197)
 • Castor with a seed rate of 15 kg/ha.
• *Rabi*
 - Rapeseed mustard (Pusa Jaikisan), Barley, Ratna, Chickpea (K-850), lentil (L-9-12), and Taramira (TMH-1) and safflower in the order.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uttar Pradesh</td>
<td>Unnao (Ganga – Yamuna Doab)</td>
<td>Medium runoff and High yield gap</td>
</tr>
<tr>
<td></td>
<td>Lalitpur (Bhulkhand Uplands, Uttar Pradesh)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Badaun (Ganga – Yamuna Doab)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jaunpur and Ballia (Ganga – Yamuna Doab)</td>
<td>Saharanpur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Unnao</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Inceptisols – 100%</td>
</tr>
<tr>
<td></td>
<td>Deep loamy alluvium - derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>946</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1567</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120 – 150</td>
</tr>
</tbody>
</table>

Soil and water conservation
- Sowing across the slope and ridging later
- Compartmental bunds for raising crops on conserved soil moisture
- Contour farming
- Deep ploughing during summer followed by two cultivators

Crop management
- **Varieties**: Hy. Ganga –5, Hy. Ganga safed 2, Jaunpuri
- **Nutrient management**: 80 kg N + 40 kg P₂O₅ + 30 kg K₂O

Farm Implements / tools
- Land preparation and sowing of seed and application of fertilizer by power tiller operated till plant machine

Alternate farming systems
- **Fodder/green biomass**: *Leucaena, D. sissoo, Azadiracta indica, Syzygium cumini, Sesbania, Pongamia, Cassia siamea*
- **Fruit**: Mango, Guava, Amla, Ber, Phalsa, Bael, Jamun.
- **Medicinal & Aromatic Plants**: *Papaver somniferum Palmarosa, Vetiveria zyanoides, Cymbopogan flexuosus*
- **Vegetables**: Tomato, Brinjal, Okra, Chilli, Amanar-thes
- **Animal Component**: Female Cattle, Female Buffaloes, Male Cattle, Sheep, Goat and Poultry
Districtwise Promising Technologies for Rainfed Cereals based Production System in India

Lalitpur

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Lalitpur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Inceptisols – 100% S Deep loamy and clayey mixed red and black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>804</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1489</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120 – 150</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Sowing across the slope and ridging later
- Compartmental bunds for raising crops on conserved soil moisture

Crop management

- **Varieties**: Hy. Ganga –5, Hy. Ganga safed - 2, Jaunpuri
- **Nutrient management**: 80 kg N + 40 kg P₂O₅ + 30 kg K₂O

Alternate farming systems

- **Fodder/green biomass**: *Leucaena, Melia azadirachta, Dichro stachys cineraria, Albizzia amara, A.lebbeck, Hardwickia binata, A.nilotica*
- **Fruit**: *Emblica officinalis* (amla), Guava, Ber, Mango
- **Medicinal & Aromatic Plants**: *Rauvolfia serpentina, Vetiveria zyzanoides, Palma rosa, Safed musli, Asvagandha*
- **Vegetables**: Bottle gourd, Brinjal, Tomato, Chillies, Brinjal, Cowpea, Okra
- **Animal component**: Female Cattle, Male Cattle, Female Buffaloes, Goat, and Poultry

Badaun

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Badaun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Inceptisols – 100% S Deep loamy and alluvium - derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>891</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1439</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120 – 150</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Compartmental bunding after seedling emergence
- Contour farming
- Graded border strips
• Sowing across the slope and ridging later
• To mitigate early season drought, one extra inter cultivation along with straw mulch @ 5 t/ha is effective.
• One protective irrigation is only solution to control late season drought effect during summer.
• Deep tillage during summer and making compartmental bunding after seedlings emergence.
• Criss-cross ploughing by country plough after each effective rainfall.
• To mitigate early season drought, one extra inter cultivation along with straw mulch @ 5 t/ha is effective. One protective irrigation is only solution to control the adverse effect of late season drought.

Crop management
• Nutrient management: 80 kg N + 40 kg P₂O₅ + 30 kg K₂O

Farm Implements / tools
• Dryland weeder is quite effective and economic in controlling the weeds in both seasons.

Alternate farming systems
• Agro hortisystem: Ber + greengram/ clusterbean/ cowpea for grain purpose
 Ber + pearl millet (fodder)
• Fodder/green biomass: A.indica, Leucaena, A. lebbeck, H. binata, Pongamia, C. siamea, Bauhinia
• Fruit: Mango, gauva, Amla, Phalsa, Jamun, Caronda
• Medicinal & Aromatic Plants: Papaver somniferum, Palma rosa, Cymbopogan flexuosus, Vetiveria zyzanoides
• Vegetables: Tomato, Chillies, Brinjal, Okra , Bottle gourd, Amaranth and Cowpea.
• Animal Component: Female Cattle, Female Buffaloes, Goat, and Poultry

Contingent planning
• Kharif
 • Under normal rainfall :
 • Pearl millet (Proagro-9402), pigeon pea (UPAS-120), greengram (K-851), clusterbean (RGC-197)
 • As the monsoon progresses
 • Rainfall upto end of July
 • Cereals and Pulses: Pearl millet (Proagro-9402) intercropped with pigeon pea (UPAS-120, IPCL-87) Blackgram (T-9) and greengram (K-851). Pure crop of clusterbean, blackgram and greengram.
 • Oilseeds: Groundnut (Chandra) and sesame (Pratap) upto the end of third week of July
 • Rainfall upto third week of August
• Cereals and pulses: Clusterbean (RGC-197) and transplanting of pearlmillet (MBH-163)

• Rainfall upto end of August

• Clusterbean as pure crop (RGC-197)

• Castor with a seed rate of 15 kg/ha.

• **Rabi:**

• Mustard (Pusa Jaikisan), Barley, Ratna, Chickpea (K-850), lentil (L-9-12), and Taramira (TMH-1) and safflower in the order.

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Jaunpur</th>
<th>Ballia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
<td>hot dry sub humid</td>
</tr>
<tr>
<td></td>
<td>hot/ moist sub humid</td>
<td></td>
</tr>
<tr>
<td>Soils</td>
<td>Inceptisols – 100%</td>
<td>Inceptisols – 100%</td>
</tr>
<tr>
<td></td>
<td>Deep loamy alluvium - deveried soils</td>
<td>Deep loamy aluvium derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1079</td>
<td>1085</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1538</td>
<td>1492</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120 – 150</td>
<td>150 – 210</td>
</tr>
</tbody>
</table>

Soil and water conservation

• Inter-plot water harvesting

• Raised bed and sunken system

Crop management

• **Varieties:** Ganga safed-2 (suitable for sequence and inter cropping system), Kanchan, Jaunpuri

• **Seed rate:** 25 kg/ha

• **Planting Pattern:** 60 x 20 cm

Suitable cropping systems

• Maize – lentil

• Maize + mustard

• Maize + blackgram (1: 3)

• Maize + okra

• For fodder:

• Maize + cowpea-oats
Farm Implements / tools

<table>
<thead>
<tr>
<th>Tool implement</th>
<th>Cost/unit</th>
<th>Operations</th>
</tr>
</thead>
</table>
| Bullock drawn Malviya multi – farming machine | Rs. 2350/= | 1. For field preparation
2. For seeding dryland crops and fertilizing through mechanical metering device
3. For inter cultivation between two plant rows (particularly Kharif season crop) |
| Dryland weeder (modified from weeder supplied by T.A.U) | Rs.70/- | For weed control between plant rows of rainfed crops |

Alternate Farming systems

- **Agrohortisystem**: Guava + pigeonpea
- **Fodder/green biomass**: *Luecaena leucocephala*, *Azadirachta indica*, *Albizia lebbeck*, *Bauhinia purpurea*, *A. procera*, *B. monosperma*, *A.amara*, *D.sissoo*
- **Fruit**: Guava, Amla, Ber, Mango Bael, Jamun
- **Medicinal & Aromatic Plants**: *Papaver somniferum*, *Cymbopogan flexuoslus*, *P. rosalea*, *Palma rosa*, *Vetiveria zyzanoides*
- **Vegetables**: Bottle gourd, Brinjal, Chillies, Cluster bean, Cowpea, round melon
- **Animal component**: Female Cattle, Female Buffaloes, Male Cattle, Sheep, Goat and Poultry

Contingent planning

- **Normal season**:
 - Recommended crop and varieties along with other cultural practices should be followed as under:

 Kharif
 - Rice : NDR-97, NDR-118, Govind, Vandana
 - Maize : Ganga safed-2, Knachan, Jaunpuri
 - Pearlmillet : BJ-104, Pusa-23, Pusa-322
 - Blackgram : T-9, Pant U-19, Pant U-35
 - Greemgram : Jyoti Jagriti, Janpriya, Pant moong-1, Narendra moong-1
 - Sesam : T-4, T-12, Gujrat til-1.
 - Pigeonpea : Bahar, NA-1, T-21

 Rabi
 - Lentil : Pant L-406, PantL-639, L-4076, K-75
 - Wheat : Huw-533, K-8027, C-306
 - Barley : DL-3, Jyoti, K-125
 - Mustard : Varuna, Vardhan, Sanjukta, Kranti
 - Linseed : Garima, Neelam
 - Chickpea : Pusa-256, Awarodhi
• **Aberrant weather**

 Normal onset of monsoon followed by long gaps in rainfall;

 • In the case of very early break in monsoon i.e. 7-10 days after seeding and if seedlings are killed resow with the same variety.

 • Gap filling/transplanting in case of cereals like upland rice and pearl millet may be done if drought occurs about a month after seeding and is followed by showers. Follow this by light topdressing i.e. 10-15 kg/ha. For this purpose community nurseries or emergency nurseries should be kept ready.

• **Delayed onset of monsoon:**

 • If monsoon sets in as late as the last week of July, short duration upland rice such as NDR-97 and Vandana are recommended on medium & low lands. Uplands should be considered for Pigeonpea base intercrop. If rains are delayed beyond the period but start somewhere in the first to second week of August and growing season is reduced to 60-70 days, then the cultivation of hybrid pearl millet (BJ-560, BJ-104), blackgram (T-9), greengram (Jagriti, Jyoti) should be taken up. Pulse base intercropping is also recommended. Yet another alternative could be to harvest a fodder of either sorghum, pearl millet, maize or mixture of either of cowpea, blackgram, greengram and one of the above fodder crops. These crops will be followed by winter crops like mustard, barley, lentil, linseed and chickpea.

• **Early stoppage of rains towards the end of season:**

 • Normal growing of short duration *kharif* crops such as upland rice (NDR-97 or Vandana), blackgram (T-9), sesame (T-13) may be done. sorghum, maize, pearl millet, and cowpea for fodder could be harvested. If the rain stops very early, i.e. by the end of August or first week of September, only fodder crops and grain legumes could be harvested. Later on as a mid-season correction sunflower could be planted as it could be sown any time in the year.

• **In extreme drought conditions that prevailed during kharif 1979-80 and 1987-88 season, the following observations were made and appear to be of worth consideration**

 • Only short duration crops like grain legumes (blackgram and greengram) should be grown

 • Among cereals, pearl millet (BJ-104) gave a fair performance

 • Intercropping blackgram in inter rows of pigeonpea was found successful

 • Rice crop, if already sown is not likely to succeed, may be ploughed under to conserve the moisture in the soil. This may permit growing of lentil, chickpea, mustard or barley during *rabi*.

 • Late season drought coinciding with reproductive phase of upland rice is frequently experienced (3/7 years). If period of drought approaches 8-10 days, 25% yield could be compensated by one life saving irrigation (5 cm depth)

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uttar Pradesh</td>
<td>Saharanpur (Ganga – Yamuna Doab, Uttar Pradesh)</td>
<td>Medium runoff and High yield gap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Saharanpur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot dry/ moist sub humid (transitional)</td>
</tr>
<tr>
<td>Soils</td>
<td>Inceptisols – 100%</td>
</tr>
<tr>
<td></td>
<td>Deep loamy to clayey alluvium - derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1164</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1334</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120 – 150</td>
</tr>
</tbody>
</table>
Soil and water conservation

- Compartmental bunding after seedling emergence
- Contour farming
- Graded border strips
- Sowing across the slope and ridging later
- To mitigate early season drought, one extra inter cultivation along with straw mulch @ 5 t/ha is effective.
- One protective irrigation is only solution to control late season drought effect during summer.
- Deep tillage during summer and making compartmental bunding after seedlings emergence.
- Criss-cross ploughing by country plough after each effective rainfall.

Crop management

- Nutrient management: 80 kg N + 40 kg P₂O₅ + 30 kg K₂O

Farm Implements / tools

- Dryland weeder is quite effective and economic in controlling the weeds in both seasons

Alternate farming systems

- Fodder/green biomass: A.indica, Leucaena, A. lebbeck, H. binata, Pongamia, C. siamea, Bauhinia
- Fruit: Mango, gauva, Amla, Phalsa, Jamun, Caronda
- Medicinal & Aromatic Plants: Papaver somniferum, Palma rosa, Cymbopogan flexuosus, Vetiveria zyzanooides
- Vegetables: Tomato, Chillies, Brinjal, Okra, Bottle gourd, Amaranth, Cowpea.
- Animal component: Female Cattle, Female Buffaloes, Goat, Poultry

Contingent planning

- Kharif
 - Under normal rainfall:
 - Pearlmillet (Proagro-9402), pigeonpea (UPAS-120), greengram (K-851), clusterbean (RGC-197)
 - As the monsoon progresses
 - Rainfall upto end of July
 - Cereals and Pulses: Pearlmillet (Proagro-9402) intercropped with pigeonpea (UPAS-120, IPCL-87) Blackgram (T-9) and greengram (K-851). Pure crop of clusterbean, blackgram and greengram.
 - Oilseeds: Groundnut (Chandra) and sesame (Pratap) upto the end of third week of July
 - Rainfall upto third week of August
- Cereals and pulses: Clusterbean (RGC-197) and transplanting of pearlmillet (MBH-163)
- Rainfall upto end of August
 - Clusterbean as pure crop (RGC-197)
 - Castor with a seed rate of 15 kg/ha.
- *Rabi*: Rapeseed Mustard (Pusa Jaikisan), Barley, Ratna, Chickpea (K-850), lentil (L-9-12), and Taramira (TMH-1) and safflower in the order.

Prioritised cultural options for rainfed maize based production system

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Prioritised Options</th>
<th>Avg yield (kg/ha)</th>
<th>Expected yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>Nizamabad</td>
<td>In situ Soil conservation. Improved crop varieties</td>
<td>2702</td>
<td>2972 to 3107</td>
</tr>
<tr>
<td></td>
<td>Adilabad</td>
<td>Management of surplus water and pest for rise in productivity</td>
<td>1540</td>
<td>1771 to 1848</td>
</tr>
<tr>
<td></td>
<td>Medak, Warangal</td>
<td>Management of surplus water and pest for rise in productivity</td>
<td>1990</td>
<td>2289 to 2388</td>
</tr>
<tr>
<td>Chhattisgarh</td>
<td>Surguja</td>
<td>Extension efforts for better adoption of improved varieties, better management technologies including water management for productivity improvement</td>
<td>1038</td>
<td>1246 to 1298</td>
</tr>
<tr>
<td></td>
<td>Bastar, Bilaspur</td>
<td>Extension efforts for better adoption of improved varieties, better management technologies including water management for productivity improvement</td>
<td>1372</td>
<td>1646 to 1715</td>
</tr>
<tr>
<td>Gujarat</td>
<td>Kaira, P.Mahals</td>
<td>Extension efforts for better adoption of improved varieties, better management technologies including water management for productivity improvement</td>
<td>1197</td>
<td>1436 to 1496</td>
</tr>
<tr>
<td></td>
<td>Ambala</td>
<td>Management of surplus water and pest for rise in productivity</td>
<td>1540</td>
<td>1771 to 1848</td>
</tr>
<tr>
<td>Jharkhand</td>
<td>Palamu</td>
<td>Extension efforts for better adoption of improved varieties, better management technologies including water management for productivity improvement</td>
<td>763</td>
<td>916 to 954</td>
</tr>
<tr>
<td></td>
<td>Dumka</td>
<td>Extension efforts for better adoption of improved varieties, better management technologies including water management for productivity improvement</td>
<td>1372</td>
<td>1646 to 1715</td>
</tr>
<tr>
<td>Karnataka</td>
<td>Dharwad</td>
<td>In situ Soil conservation. Improved crop varieties</td>
<td>2702</td>
<td>2972 to 3107</td>
</tr>
<tr>
<td></td>
<td>Mysore, Shimogar</td>
<td>In situ Soil conservation. Improved crop varieties</td>
<td>3072</td>
<td>3379 to 3533</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>Khargone, Shajapur</td>
<td>Management of surplus water and pest for rise in productivity</td>
<td>1540</td>
<td>1771 to 1848</td>
</tr>
<tr>
<td></td>
<td>Betul, Dewas, Indore, Jhabua, Ratlan, Shivpuri, Sidhi</td>
<td>Extension efforts for better adoption of improved varieties, better management technologies including water management for productivity improvement</td>
<td>1197</td>
<td>1436 to 1496</td>
</tr>
<tr>
<td>State</td>
<td>District</td>
<td>Description</td>
<td>Year(s)</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>--</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>Guna, Shahdol</td>
<td>Extension efforts for better adoption of improved varieties, better management technologies including water management for productivity improvement</td>
<td>1038 1246 to 1298</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mandla</td>
<td>Extension efforts for better adoption of improved varieties, better management technologies including water management for productivity improvement</td>
<td>1372 1646 to 1715</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maharastra Dhule</td>
<td>Better management practices including in situ management practices and high yield cultivars for productivity increase</td>
<td>875 1050 to 1094</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orissa Ganjam, Kalahandi, Phulbani</td>
<td>Extension efforts for better adoption of improved varieties, better management technologies including water management for productivity improvement</td>
<td>1038 1246 to 1298</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Koraput</td>
<td>Extension efforts for better adoption of improved varieties, better management technologies including water management for productivity improvement</td>
<td>1372 1646 to 1715</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Punjab Roopnagar</td>
<td>Management of surplus water and pest for rise in productivity</td>
<td>1540 1771 to 1848</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gurdaspur</td>
<td>Extension efforts for better adoption of improved varieties, better management technologies including water management for productivity improvement</td>
<td>1372 1646 to 1715</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rajasthan Bhilwara, Udaipur</td>
<td>Better management practices including in situ management practices and high yield cultivars for productivity increase</td>
<td>875 1050 to 1094</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dungarpur</td>
<td>Better management practices including in situ management practices and high yield cultivars for productivity increase</td>
<td>629 755 to 786</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tonk</td>
<td>Better management practices including in situ management practices and high yield cultivars for productivity increase</td>
<td>858 1030 to 1073</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Banswara, Kota</td>
<td>Better management practices including in situ management practices and high yield cultivars for productivity increase</td>
<td>858 1030 to 1073</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bundi, Jhalawar</td>
<td>Extension efforts for better adoption of improved varieties, better management technologies including water management for productivity improvement</td>
<td>1197 1436 to 1496</td>
<td></td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>Unnao</td>
<td>Better management practices including in situ management practices and high yield cultivars for productivity increase</td>
<td>858 1030 to 1073</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kheri, Sitapur</td>
<td>Extension efforts for better adoption of improved varieties, better management technologies including water management for productivity improvement</td>
<td>763 916 to 954</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kanpur</td>
<td>Management of surplus water and pest for rise in productivity</td>
<td>1540 1771 to 1848</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ballia, Hardoi, Jaunpur, Saharanpur</td>
<td>Extension efforts for better adoption of improved varieties, better management technologies including water management for productivity improvement</td>
<td>1197 1436 to 1496</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Badaun</td>
<td>Extension efforts for better adoption of improved varieties, better management technologies including water management for productivity improvement</td>
<td>1197 1436 to 1496</td>
<td></td>
</tr>
</tbody>
</table>
SORGHUM BASED PRODUCTION SYSTEM

Sorghum is the third important food grain crop of the country. It is the major food and fodder crop under the semi-arid agriculture currently occupying 11-12 mha area. India, tops among the nine major sorghum growing countries in the world, ranks second in grain production and seventh in productivity. The productivity of sorghum in India is five times lower than the first ranking country. Major reasons for this low yield are that nearly 60% of the crop area falls under sub-marginal agro-climatic and edaphic conditions, which are low in fertility of soil with recurring moisture stress. Sorghum is grown during rainy (kharif) and post rainy (rabi) seasons. About 55% area is under kharif season contributing 66% of production and 45% area under rabi season contributing 34% of production data. Nearly 20% of kharif area is used to produce dual-purpose sorghum with low emphasis on grain yield. In addition, it is believed that forage sorghum is grown in about 2.6 mha, which is not properly documented.

Kharif sorghum is grown in 13.1 mha in 346 districts out of which 7.5 mha is rainfed. About 85% of the rainfed area (5.8 m.ha) is in 71 districts.

<table>
<thead>
<tr>
<th>Selection criteria</th>
<th>No. of Districts</th>
<th>Area under kharif sorghum ('000 ha)</th>
<th>Area under rainfed kharif sorghum ('000 ha)</th>
<th>Gross cropped area ('000 ha)</th>
<th>Yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfed states (13)</td>
<td>346</td>
<td>13138</td>
<td>7538</td>
<td>167868</td>
<td>613</td>
</tr>
<tr>
<td>AESR 3-13</td>
<td>261</td>
<td>12303</td>
<td>6880</td>
<td>131273</td>
<td>714</td>
</tr>
<tr>
<td>Cumulative 85%</td>
<td>71</td>
<td>8310</td>
<td>5829</td>
<td>44517</td>
<td>835</td>
</tr>
</tbody>
</table>

The trends in area, production and productivity of Sorghum in India (1980 - 2005) are shown in Fig. 5.

The trends in area and yield of sorghum in different districts

<table>
<thead>
<tr>
<th>Area</th>
<th>Production</th>
<th>Productivity</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreasing</td>
<td>Stable</td>
<td>Stable</td>
<td>Haryana</td>
</tr>
<tr>
<td>Decreasing</td>
<td>Increasing</td>
<td>Increasing</td>
<td>Uttar Pradesh</td>
</tr>
<tr>
<td>Decreasing</td>
<td>Stable</td>
<td>Increasing</td>
<td>Rajasthan</td>
</tr>
<tr>
<td>Decreasing</td>
<td>Decreasing</td>
<td>Increasing</td>
<td>Gujarat, Madhya Pradesh</td>
</tr>
<tr>
<td>Decreasing</td>
<td>Decreasing</td>
<td>Stable</td>
<td>Maharatra</td>
</tr>
<tr>
<td>Decreasing</td>
<td>Decreasing</td>
<td>Decreasing</td>
<td>Karnataka, Tamil Nadu</td>
</tr>
</tbody>
</table>

Farming systems

Details on associated crops and their percent area covered and spread of livestock population are presented below:

<table>
<thead>
<tr>
<th>Crops</th>
<th>Animals</th>
<th>Districts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorghum</td>
<td>Goat</td>
<td>Chhindwara, Chhatarpur, Guna, Ratlam, Ujjain, Mandasur, Dwas, Dhar,</td>
</tr>
<tr>
<td>Soybean</td>
<td>Female Buffalo</td>
<td>Jhabua, Khargone, Khandwa, Betul, Shajapur, Mysore, Coimbatore, Nanded,</td>
</tr>
<tr>
<td>Chickpea</td>
<td>Sheep</td>
<td>Buldhana, Akola, Amaravthi, Yeotmal, Wardha, Ahmednagar, Amreli,</td>
</tr>
<tr>
<td>Maize</td>
<td>Male Buffalo</td>
<td>Bhavnagar, Mehsana, Surendranagar, Jhalawar, Kota, Rohtak, Laitlpor,</td>
</tr>
<tr>
<td>Sorghum</td>
<td>Goat</td>
<td>Hamirpur, Banda, Dharmapuri, Latur, Baran</td>
</tr>
<tr>
<td>Chickpea</td>
<td>Sheep</td>
<td>Shivpuri, Bihlawa, Tiruchirapalli</td>
</tr>
<tr>
<td>Pearl millet</td>
<td>Female Buffalo</td>
<td>Jaipur, Sawai Madhopur</td>
</tr>
<tr>
<td>Maize</td>
<td>Male Buffalo</td>
<td>Fatehpur, Jhansi</td>
</tr>
<tr>
<td>Rapeseed Mustard</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 5. Trends in Area, Production and Productivity of Sorghum (1980-2005)
GUJARAT

In Gujarat there are five districts viz. Amreli, Bhavnagar, Mehsana, Ahamadabad and Surendranagar under low runoff and high yield gap region. The trends in area, production and productivity of sorghum in Gujarat (1980 - 2005) are shown in Fig. 6.

Fig. 6. Trends in Area, Production and Productivity of Sorghum in Gujarat (1980-2005)
Agro-geographic setting

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gujarat</td>
<td>Amreli (Coastal Kathiawad)</td>
<td>Low runoff and High yield gap</td>
</tr>
<tr>
<td></td>
<td>Bhavnagar (Central Kathiawad Peninsula)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mehsana and Ahmedabad (North Gujarat Plains)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surendranagar (North Kathiawad Peninsula)</td>
<td></td>
</tr>
</tbody>
</table>

Climate

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Amreli</th>
<th>Bhavnagar</th>
<th>Mehsana</th>
<th>Ahmedabad</th>
<th>Surendranagar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot dry semi arid, Hot moist semi arid</td>
<td>Hot dry semi arid, Hot moist semi arid</td>
<td>Hot arid</td>
<td>Hot dry semi arid</td>
<td>Hot dry semi arid</td>
<td></td>
</tr>
</tbody>
</table>

Soils

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Amreli</th>
<th>Bhavnagar</th>
<th>Mehsana</th>
<th>Ahmedabad</th>
<th>Surendranagar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthids – 100%</td>
<td>Orthids – 75%; Vertic soils – 25%</td>
<td>Ustalf/ Ustolls – 100%</td>
<td>Ustalf/ Ustolls – 100%</td>
<td>Ustalf/ Ustolls – 60%; Vertic soils – 40%</td>
<td></td>
</tr>
<tr>
<td>Shallow and medium loamy clayey black soils, deep black soils, deep loamy coastal alluvium</td>
<td>Deep loamy gray brown and alluvium</td>
<td>Deep loamy grey brown and alluvium</td>
<td>Deep loamy grey brown and alluvium</td>
<td>Deep loamy grey brown and alluvium</td>
<td></td>
</tr>
<tr>
<td>Deep loamy - derived soils</td>
<td>- derived soils</td>
<td>- derived soils</td>
<td>- derived soils</td>
<td>- derived soils</td>
<td></td>
</tr>
</tbody>
</table>

Annual rainfall (mm)

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Amreli</th>
<th>Bhavnagar</th>
<th>Mehsana</th>
<th>Ahmedabad</th>
<th>Surendranagar</th>
</tr>
</thead>
<tbody>
<tr>
<td>607</td>
<td>602</td>
<td>507</td>
<td>823</td>
<td>601</td>
<td></td>
</tr>
</tbody>
</table>

Potential evapotranspiration (mm)

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Amreli</th>
<th>Bhavnagar</th>
<th>Mehsana</th>
<th>Ahmedabad</th>
<th>Surendranagar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1877</td>
<td>1814</td>
<td>1988</td>
<td>1678</td>
<td>1970</td>
<td></td>
</tr>
</tbody>
</table>

Length of growing period (LGP)/moisture availability period (days)

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Amreli</th>
<th>Bhavnagar</th>
<th>Mehsana</th>
<th>Ahmedabad</th>
<th>Surendranagar</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-150</td>
<td>90-150</td>
<td>90-150</td>
<td>90-120</td>
<td>60-120</td>
<td></td>
</tr>
</tbody>
</table>
Soil and water conservation
• Shallow ploughing before sowing and ridging and furrowing 25 days after sowing.
• Increasing soil infiltration capacity and reducing soil crusting problem
• Two to four interculturings along with deep ploughing in groundnut

Crop management
• Varieties: GJ-39, GJ-40, GJ-41, GJ-42 - Suitable for mono and inter-cropping systems GFS- 4 – For fodder sorghum
• Seed rate: 8 kg/ha for grain sorghum and 20 kg/ha for fodder sorghum
• Planting Pattern: 45 x 15 cm
• Nutrient management
 • 90 kg N + 30 kg P₂O₅: N in 3 splits 25% as basal + 50% at tillering + 25% at flag leaf stage or 2 splits 50% as basal and 50% at tillering
 • For dual purpose sorghum, CSV-15, SPV-1616, apply 60 kg N and 30 kg P₂O₅/ha
 • Apply Nitrogen in three splits viz., 25% as basal, + 50% at tillering and 25% at flag leaf stage
 • For fodder sorghum – apply 50 kg N/ha in tow splits (25 kg at basal + 25 kg at top dressing at 45 days after)

Suitable cropping systems
• Sorghum + pigeonpea (1:1)
• In shallow and medium fertile soils, 16 rows of sorghum (CSH-5) in alley of perennial pigeonpea (ICPL-185)

Farm implements / tools
• Two bowl seed cum fertilizer drill

Alternate Farming Systems
• Fodder/ green biomass: Dichrostachys cineraria, A. lebbeck, Leucaena leucocephala, Pongamia pinnata
• On slopy fallow lands with shallow soils – Dicanthium annulatum; 16 rows of groundnut (GG-2) in alleys of perennial pigeonpea (ICPL-185); 16 rows of groundnut (GG-2) in alleys of subabul (Hawai gaint)
• Fruit: Custard apple, Mango, Pomegranate Phalsa, Fig, Jamun, Tamarind
• Medicinal/ Aromatic Plants: Plantago ovata, Cassia angustifolia, Liquorice.
• Vegetables: Cowpea, Cluster bean, Brinjal, Okra, Long melon, Drum stick.
• Animal Component: Female / male cattle; she buffaloes, sheep, goat

Contingent planning
• Delay in monsoon by
 • 15th July to 31st July: Grow erect groundnut (GG-2, GG-5, GG-7), Sesame (G-Til-1, G.Til-2), Castor (GAUCH-1), Hybrid Bajra (GHB-235, GHB-316, GHB-558), Greengram (K-851, GM-4), Blackgram (T-9, TPU-4), Pigeonpea (ICPL-87, GT-100)
1st August to 14th August: Grow pulses blackgram (T-9, TPU-4), forage maize / sorghum (Gundri, GFS-5), castor (GAUCH-1, GC-2) and sesamum (Purva-1)

15th August to 31st August: Grow forage maize / sorghum (Gundri, GFS-5), sesamum (Purva-1)

• Drought spell after normal sowing

1-2 weeks after sowing: Resowing of early duration varieties or alternate crops should be recommended as under, if sufficient rainfall is received. Hybrid bajra (GHB-235, GHB-316, GHB-558), sorghum (GJ-39, J-41), sesamum (G.Til-1, G-Til-2) and castor (GAUCH-1, GC-2), blackgram (T-9, TPU-4)

3-5 weeks after sowing: Agricultural operations like interculturing, weeding, hoeing and mulching may be taken up, if drought spell prolongs for two weeks or more weeks. The ratooning of sorghum may be done and top dressing of fertilizer should be suggested if sufficient rainfall after 3-5 weeks dry spell

• Early withdrawal of monsoon

• Give life saving irrigation
• Minimize moisture losses through complete removal of weeds
• Perform interculturing to conserve soil moisture
• Harvest the crop according to maturity of crop duration
• Thin the plant population

• Satisfactory late rains during September - October

• Relay cropping of castor, sunflower, sesame (Purva-1) and fodder sorghum
• Second crops like mustard and chickpea could be taken
• Ratooning of sorghum
HARYANA

In Haryana there is one district viz. Rohtak under low runoff and high yield gap region. The trends in area, production and productivity of sorghum in Haryana (1980 - 2005) are shown in Fig. 7.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haryana</td>
<td>Rohtak (South East Haryana)</td>
<td>Low runoff and High yield gap</td>
</tr>
</tbody>
</table>

Agro-geographic setting

<table>
<thead>
<tr>
<th>Climate</th>
<th>Hot semi arid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td>Inceptisols – 100%, Deep loamy alluvium - derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>511</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1636</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>90-120</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Increasing soil infiltration capacity and reducing soil crusting problem
- Inter-plot water harvesting of 1:1 cropped to uncropped land
- Dead furrows at 3.6 m intervals
- Land shaping
- Pre monsoon/ summer tillage and ridge furrow configurations across the land slope to improve moisture storage.
- Indigenous water harvesting structures
Fig. 7. Trends in Area, Production and Productivity of Sorghum in Haryana (1980-2005)
Crop management

- **Varieties**: HC 308, HC136, SSG 59-3
- **Seed rate**: 5-6 kg/ha
- **Planting pattern**: 25 cm row to row
- **Nutrient management**: 80 kg N + 40 kg P₂O₅

In the absence of information about sorghum crop, the above relevant crop management practices are taken from Jhansi district. However, locally available information about sorghum from the nearest research center may be used.

Farm implements / tools

- Use of blade type wheel hand hoe to save time and energy for interculture operations
- Tactor – drawn ridger – seeder (3 Point hich tools)
- Bullock-drawn Ridger seed drill
- Bulloc-drawn interculture blade harrow
- Hand wheel Hoe

Alternate Farming Systems

- **Fodder/ green biomass**: Agri-Horti system of ber intercropped with cowpea, greengarm, clusterbean, berseem, lucerne and anjan grass.
- **A.lebbeck, P.cineraria, Melia azadirachta [for saline soils], D.sissoo, A.indica.**
- **Fruit**: Guava, Amla, Karonda, Phalsa, Bael, Jamun
- **Medicinal & Aromatic Plants**: Plantago ovata, Palma rosa, Vetiveria zyzanoides, Ocimum viride, Liquorice.
- **Vegetables**: Tomato, Chillies Okra, Cow pea, Palak, Bottle gourd
- **Animal Component**: Female Buffaloes, Sheep
KARNATAKA

In Karnataka there is one district viz. Mysore under medium runoff and high yield gap region. The trends in area, production and productivity of sorghum in Karnataka (1980 - 2005) are shown in Fig. 8.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karnataka</td>
<td>Mysore (Central Karnataka)</td>
<td>Medium runoff and High yield gap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Mysore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Sandy Alfisols – 100%, Medium to deep red loamy soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>920</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1535</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120-150</td>
</tr>
</tbody>
</table>

Soil and water conservation

- **Long term Conservation practices:**
 - Construction of contour bunds with a cross section of 0.54 Sq. m to control and conserve runoff.
 - Construction of graded bunds by providing 0.2 to 0.4 per cent grade with a cross section of 0.36 Sq. m for safe disposal of excess runoff.
 - Graded broader strips with a gradient of 0.1 to 0.5 per cent to fit into the local topography and hydrographic features.
 - Broad based bunds of 1.5 Sq.m. cross sections on contour with 1 m vertical interval for better rainwater conservation.
 - Reduced contour bunds (0.36 Sq. m) in combination with vegetative live barriers for effective conservation of rainwater in low rainfall areas (< 600 mm)
Fig. 8. Trends in Area, Production and Productivity of Sorghum in Karnataka (1980-2005)
• **In-situ Conservation practices:**

 • Opening a dead furrow in between the paired rows in pigeonpea and maize for better moisture conservation.

 • Graded ridge and furrows are made on 0.2 to 0.4 per cent grade for better conservation of moisture as well as safe disposal for cultivation of maize.

 • Fall ploughing to a depth of 15-30 cm. for better infiltration of rainwater during onset of rains.

 • Deep tillage to a depth of 25-30-cm. using mould board plough to reduce the weed incidence and increase soil moisture storage for sunflower and maize crops.

 • Crop cultivation across the slope with Vetiver/ pennisetum grass as live barrier at 0.5 m vertical interval to check the velocity of runoff and better moisture conservation and availability for a longer period for Finger millet/groundnut/maize/sunflower crops.

Crop management

• **Varieties:** For Fodder Sorghum : J – Set –3, MP- Chari, GS-20, Pusa Chari, S- 1049, Salabani, Pioneer x 988, SSG – 59 – 3, HC 308, HC 136

• **Seed rate:** 7.5 kg/ha for grain sorghum, 20-25 kg/ha for forage sorghum

• **Planting Pattern :** 25 row to row spacing

• **Nutrient management :** 10 t FYM /ha + 65 kg N + 40 kg P₂O₅ + 40 kg K₂O. N in two splits i.e., ½ at sowing and ½ at 30 days after sowing.

Suitable cropping systems

• Sorghum – pigeonpea

Farm implements / tools

<table>
<thead>
<tr>
<th>Tools/Implements</th>
<th>Cost/Unit(Rs.)</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullock drawn seed-cum-fertilizer drill</td>
<td>1500/-</td>
<td>Bullock drawn manual operation for finger millet seeding and fertilizer application (Hand metered)</td>
</tr>
<tr>
<td>Groundnut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multifurrow opener</td>
<td>1300/-</td>
<td>Opening furrows for hand seeding of different crops</td>
</tr>
<tr>
<td>Bent tyne hoe</td>
<td>350/-</td>
<td>Intercultural operation for finger millet</td>
</tr>
<tr>
<td>Duck foot hoe</td>
<td>350/-</td>
<td>Intercultural operation for finger millet and groundnut for moisture conservation (Hand metered)</td>
</tr>
<tr>
<td>Crust brakes</td>
<td>500/-</td>
<td>For breaking the crust to facilitate smooth emergence of the seedling in finger millet and groundnut.</td>
</tr>
</tbody>
</table>

Alternate Farming Systems

• **Fodder/ green biomass:** *Casuarina, silveroak, Glyricidia, Caliandra, Faidherbia albida* on bunds Gravelly shallow soils – *Stylosanthes cabra*

• High gradient non-arable lands with shallow soils – Amla In catche pits with deep soils – *Azadiracta indica, pongamia, Albizia lebbek*
- **Forage crops** – *Pennisetum, pedicallatum / cenchrus ciliaris, microtaliem axillaries, maize – African tall, sorghum for fodder*
- **Fruit**: Mango, Pomegranate, Sapota, Guava, Custard apple, Jamun
- **Wastelands** – JackFruit, custard apple, tamarind
- **Medicinal/ Aromatic Plants**: *Catharanthus roseus, Cassia angustifolia, Salanum viarum, Dioscorea, Geranium, Pogostemon patchouli, Jasmine*
- **Vegetables**: Tomato, Chillies, Okra, Water melon, Bitter gourd, Drum stick, Brinjal, Bitter gourd.
- **Animal Component**: Male / female cattle, female buffaloes, poultry, sheep, goat,
- **Other enterprises;** Mushroom cultivation, sericulture, piggery, apiary, rabbit rearing

Contingent Planning

<table>
<thead>
<tr>
<th>Month and Fortnigh (FN) in which normal rains occur</th>
<th>Crops that could be sown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monocropping</td>
</tr>
<tr>
<td>April-II FN</td>
<td>Sesamum or greengram</td>
</tr>
<tr>
<td>May I FN</td>
<td>Pigeonpea</td>
</tr>
<tr>
<td></td>
<td>Sesamum, cowpea, Greengram, Urd bean, Fodder maize, Fodder Bajra, Fodder Jowar</td>
</tr>
<tr>
<td>May-II FN</td>
<td>Pigeonpea</td>
</tr>
<tr>
<td></td>
<td>Sesamum, cowpea, Greengram, Urd bean, Fodder maize, Fodder Bajra, Fodder Jowar</td>
</tr>
<tr>
<td>June-I FN</td>
<td>Long duration Finger millet, Pigeonpea, Maize, Groundnut</td>
</tr>
<tr>
<td></td>
<td>F.maize, F.Jowar, F.Bajra, Cowpea</td>
</tr>
<tr>
<td>June-II FN</td>
<td>Long duration Finger millet, Pigeonpea, Maize and Groundnut</td>
</tr>
<tr>
<td></td>
<td>Sowing of chilli nursery</td>
</tr>
<tr>
<td>July-I FN</td>
<td>Groundnut, long duration finger millet</td>
</tr>
<tr>
<td></td>
<td>Sowing of Chilli nursery</td>
</tr>
<tr>
<td>July-II FN</td>
<td>Groundnut, long/medium duration fingermillett</td>
</tr>
<tr>
<td></td>
<td>Sowing of Chilli nursery</td>
</tr>
<tr>
<td>August-I FN</td>
<td>Cowpea, Horsegram, short duration fingermillet, transplanting chilli</td>
</tr>
<tr>
<td>August II FN</td>
<td>Short duration finger millet, transplanting of medium and long duration finger millet. Transplanting chilli. Cowpea.Horsegram</td>
</tr>
<tr>
<td></td>
<td>Short duration fingermillet, transplanting of medium and long duration finger millet, transplanting chilli. Cowpea.Horsegram. Also, Fodder crops (Maize-Bajra, Jowar)</td>
</tr>
<tr>
<td>September I FN</td>
<td>Horsegram, Transplanting of short duration finger millet and chilli (with protective irrigation)</td>
</tr>
<tr>
<td></td>
<td>Horsegram, Transplanting of short duration finger millet and chilli (with protective irrigation)</td>
</tr>
</tbody>
</table>
MADHYA PRADESH

In Uttar Pradesh there are ten districts viz. Dewas, Chhindwara, Khargone, Mandsaur, Dhar, Ujjain, Ratlam, Betul, Shahjapur and Chattarpur under medium runoff and high yield gap region. The trends in area, production and productivity of sorghum in Madhya Pradesh (1980 - 2005) are shown in Fig. 9.

Fig. 9. Trends in Area, Production and Productivity of Sorghum in Madhya Pradesh (1980-2005)
Districtwise Promising Technologies for Rainfed Cereals based Production System in India

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madhya Pradesh</td>
<td>Dewas (Central West Madhya Bharat Plateau)</td>
<td>Medium runoff and</td>
</tr>
<tr>
<td></td>
<td>Chhindwara (Central South Madhya Pradesh Satapura ranges)</td>
<td>High yield gap</td>
</tr>
<tr>
<td></td>
<td>Khargone, Mandsaur, Dhar, Ujjain and Rattlam (Western Malwa Plateau)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betul (Southern Madhya Pradesh)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shahjapur (Malwa Plateau)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chattarpur (Vindhyas scrapland)</td>
<td></td>
</tr>
</tbody>
</table>

Agro-geographic setting

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madhya Pradesh</td>
<td>Dewas (Central West Madhya Bharat Plateau)</td>
<td>Medium runoff and</td>
</tr>
<tr>
<td></td>
<td>Chhindwara (Central South Madhya Pradesh Satapura ranges)</td>
<td>High yield gap</td>
</tr>
<tr>
<td></td>
<td>Khargone, Mandsaur, Dhar, Ujjain and Rattlam (Western Malwa Plateau)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betul (Southern Madhya Pradesh)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shahjapur (Malwa Plateau)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chattarpur (Vindhyas scrapland)</td>
<td></td>
</tr>
</tbody>
</table>

Climate
- **Dewas**: Hot dry sub humid
- **Chhindwara**: Hot moist sub humid
- **Khargone**: Hot moist semi arid
- **Mandsaur**: Hot moist semi arid
- **Dhar**: Hot moist semi arid

Soils
- **Dewas**: Vertic soils – 100%
- **Chhindwara**: Vertic soils – 85%
- **Khargone**: Vertic soils–100%
- **Mandsaur**: Vertic soils–100%
- **Dhar**: Vertic soils–100%

- **Dewas**: Deep clayey black soils, shallow black soils, Medium and deep clayey black soils, shallow loamy black soils
- **Chhindwara**: Vertic soils – 15%
- **Khargone**: Vertic soils–15%
- **Mandsaur**: Vertic soils–15%
- **Dhar**: Vertic soils–15%

- **Dewas**: Medium and deep clayey black soils, shallow loamy black soils
- **Chhindwara**: Shallow to deep loamy to clayey mixed red soils and black soils
- **Khargone**: Shallow to deep loamy to clayey mixed red soils and black soils
- **Mandsaur**: Shallow to deep loamy to clayey mixed red soils and black soils
- **Dhar**: Shallow to deep loamy to clayey mixed red soils and black soils

Annual rainfall (mm)
- **Dewas**: 1079
- **Chhindwara**: 1094
- **Khargone**: 888
- **Mandsaur**: 962
- **Dhar**: 915

Potential evapotranspiration (mm)
- **Dewas**: 1707
- **Chhindwara**: 1427
- **Khargone**: 1792
- **Mandsaur**: 1601
- **Dhar**: 1692

Length of growing period (LGP) / moisture availability period (days)
- **Dewas**: 120-180
- **Chhindwara**: 180-210
- **Khargone**: 120-180
- **Mandsaur**: 120-150
- **Dhar**: 120-150
Soil and water conservation

- Raised and sunken beds (8:4 m wide with elevation difference of 0.15 to 0.20 m) prove most effective in *in-situ* rain water conservation and controlling nutrient and soil losses.

- Construction of percolation tank or any suitable water storage structures at suitable site for increasing ground water recharge and enhancing ground water storage to provide extra irrigation to the crop.

- Straighten the gullied portion in the farmers’ fields through earth moving machinery to reduce the length of gully allowing safe passage for the run off water. It brings additional area under cultivation through reclamation process.

- Construct percolation tank for increasing ground water recharge and enhancing ground water storage to provide extra irrigation to the crops.

- Use gabion as an inlet and outlet of water harvesting tank without any structural failure to trap silt on the upstream sit to increase life of water storage bodies.

- Construct water harvesting tank to retrain the excess run off from the water shed area to use stored water for irrigation purpose.

- Silpaulin (a plastic material) of 90 – 120 gsm has been found effective lining material for farm ponds used for water harvesting purposes.

- Use vegetative barriers to strengthen the mechanical bunds at suitable vertical intervals in order to reduce run off in associated soil losses from the cultivated fields.

- Develop a sort of terracing break the continuity of undulating slope to reduce the chances of degrading cultivated cultivated fields in to gullied one.

- Use mould board plough for deep tillage to increases the productivity of *kharif* crops and ensure sowing of *rabi* crop through better moisture conservation and eradication of infested weeds.

- Ensure drainage line treatment for providing safe disposal of excess run off and providing more opportunity time in order to reduce erosive velocity.

- Mould board plough, used for deep tillage to increase the productivity of kahrif crops and enhance sowing of rabi crops through better moisture conservation and eradication of infested weeds.

- Graded bunds alone and / or along with vegetative barriers at vertical intervals of 50 cm proves most effective in controlling soil erosion and nutrient losses on soils having slope up to 2 per cent.
• Off-season shallow tillage is important not only in controlling the weeds but also in helping entry of rain water.
• Develop a sort of terracing to break the continuity of undulating slope to reduce the changes of degrading cultivated fields in to gullied one.

Provide *in situ* soil mulch by operating bullock drawn dora to fill up the cracks, to conserve the soil moisture and to achieve weed control. Straw as mulch @ 4-5 t/ha in between the rows of crop plants to minimize evaporative losses, moisture conservation and to increase moisture efficiency in *rabi* crops.

Crop management

- **Hybrids**: CSH-14 and CSH-18, SPV-1616
 - **Varieties**: JJ-741, JJ-938, JJ-1041
- **Seed rate**: Varieties: 8 – 10 kg/ha kg/ha
 - Hybrids: 5 – 6 kg/ha
- **Planting Pattern**: Varieties: 45 x 12- 15 cm
 - Hybrids: 45 x 15 –20 cm
- **Nutrient management**: 80 kg N + 40 kg P₂O₅/ha + 6 t/ha FYM + Azospirillum

- **Some other important practices**
 - Sowing: 2nd to 3rd week of June after the receipt of rains

Suitable cropping systems

- Intercropping: Sorghum + pigeonpea (2:2) for medium black soils
- Crop rotation: Sorghum - chickpea/safflower for deep black soils

Farm implements / tools

- **Suitable Implements For Seedbed Preparations**:
 - Meston Plough
 - Iron Bakhar
- **Suitable Implements For Sowing Operations**:
 - Mahakal Dufan
 - Mahakal Tifan and
 - Sarta attachment for intercropping
- **Suitable Implements / Tools For Interculture Operations**:
 - Hand dora (small blade harrow)
 - Bullock drawn dora (small blade harrow with wooden beam)
 - Indore ridger
 - Mechanically metered CIAE seed cum ferti. drill has been found most suitable for planting of soybean, sorghum and safflower followed by Malwa seed -cum -ferti drill.

Alternate Farming Systems

- **Fodder/green biomass**: Dichrostachys cinereria, Albizia amara, Faidherbia albida, Hardwickia binata, Cassia, Leucaena leucocephala, Albizia lebbeck
All India Coordinated Research Project for Dryland Agriculture (AICRPDA)

- **Fruit:** Ber, Pomegranate, Mango, Fig, Tamarind
- **Medicinal & Aromatic Plants:** *Withamnia somnifera*, *Rauvolfia serpentina*, *Vetiver zyzanoides*, *Palma rosa*, *Liquorice*.
- **Vegetables:** Chilies, Okra, Watermelon, Cowpea, Cluster bean, Amaranthus, Round melon.
- **Animal Component:** Female Cattle, Male Cattle, Female Buffaloes, Goat, Poultry

Contingent Planning

If monsoon is delayed or there is failure of timely sown crops due to intermittent droughts then for delayed sowing improved crops and their varieties may be chosen for planting, as given below:

<table>
<thead>
<tr>
<th>Period</th>
<th>Crops and their varieties recommended for planting</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) 15th to 31st July</td>
<td></td>
</tr>
<tr>
<td>Maize</td>
<td>(short duration varieties like Navjot, sathi, etc.).</td>
</tr>
<tr>
<td>Pigeonpea</td>
<td>(under deep soils preferred varieties ICPL 151, T-21, Kh-2, ICPL 87, ICPL 88039 etc.).</td>
</tr>
<tr>
<td>Sunflower</td>
<td>Morden, Surya, Manjira and any other hybrids</td>
</tr>
<tr>
<td>Til</td>
<td>Bhadeli, TKG 22, TKG 37 etc.</td>
</tr>
<tr>
<td>Cowpea</td>
<td>Pusa Komal and Pusa Baisakhi</td>
</tr>
<tr>
<td>Castor</td>
<td>Gauch and Varuna.</td>
</tr>
<tr>
<td>Fodder crops</td>
<td>Sorghum sudanensis, Maize- African tall, Dinanath grass and Pearlmillet etc.</td>
</tr>
</tbody>
</table>

(B) 1st to 15th August	
Sunflower	Morden, Surya, Manjira and any of the hybrids.
Til	Bhadeli, TKG 22, TKG 37 etc.
Cowpea	Pusa Komal and Pusa Baisakhi.
Rajgira	Co-1 and Co-2.
Castor	Gauch, Varuna.
Fodder crops	Sorghum Sudanensis, Maize- African tall, Dinanath grass and Pearlmillet etc.

(C) 15th to 31st August	
Safflower	JSF-1, JSF- 7 (spineless), JSF-73, Sharda
Sunflower	Morden, Surya and Manjira
Til	Bhadeli, TKG-22, and RT-46
Rajgira	Co-1 and Co-2.
Castor	Gauch, Varuna.
Fodder crops	Barley, oats, Maize- African tall, safflower and sunflower.

Agro-geographic setting

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Chattarpur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot dry sub humid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils 80%; Inceptisols – 20%, Deep loamy to clayey mixed red and black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1044</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1429</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>150-180</td>
</tr>
</tbody>
</table>
Soil and water conservation
- Broadbed furrow
- Contour farming
- Inter-plot water harvesting
- Raised bed and sunken system
- Awarshan ki sthiti mayn kisano ke likya sughava
- Jalgrahan chhetra ke samasyayen avam prabandh

Crop management
- Varieties: Hybrids: CSV-15, CSH-16, CSH-18
 Varieties: JJ-741, JJ-938, JJ-1041
- Seed rate: Varieties: 8 – 10 kg/ha kg/ha
 Hybrids: 5 –6 kg/ha
- Planting Pattern: Varieties: 45 x 12- 15 cm
 Hybrids: 45 x 15 –20 cm
- Nutrient management: 80 kg N + 40 kg P₂O₅/ha + 6 t/ha FYM + Azospirillum
- Some other important practices:
 - Sowing: 2nd to 3rd week of June after the receipt of rains

Suitable cropping systems
- Sorghum + pigeonpea (2:2) for medium black soils
- Sorghum - chickpea/safflower for deep black soils

Alternate Farming Systems
- Fodder/green biomass: Leucaena leucocephala, Albizzia amara, Dichrostachys cineraria, Melia azadirachta, Hardwickea binala, A.lebbeck
- Fruit: Mango, Ber, Guava, Tamarind, Karonda
- Medicinal & Aromatic Plants: Safed musli, Palma rosa, Withania somnifera, Papaver somniferum, Vetiveria zyzanoides
- Vegetables: Brinjal, Chilli, Cowpea, Okra, Bottle gourd, Round melon.
- Animal Component: Female Cattle, Male Cattle, Female Buffaloes, Goats

Contingent planning
June
1) Sole crop
 a) Sorghum (CSH-16, CSH-18, JS-1041)
 b) Green gram (K-850)
 c) Blackgram (JU-2, PDU-4)
 d) Groundnut (Jawahar Jyoti, M-13)
2) Inter crop a) Sorghum + redgram (2 :1)
b) Soybean + redgram (2 :1)

July 1) Sole crop a) Rice (IR-50, JR-345)
b) Kodo (JK-155, JK-76, JK-136)
c) Sorghum (CSH-16, CSH-18)
d) Pigeonpea (NPWR –15, JA-4, Asha)
e) Groundnut (Jyoti, M 12, Exotic 1-1)

2) Inter crop a) Sorghum + redgram (2 :1)
b) Soybean + redgram (2 :1)

August
a) Castor (Aruna)
b) Pigeonpea (No.148)

October
a) Wheat (JW-17, C-306)
b) Chickpea (JG-321, JG-315)
c) Linseed (JL-23, R-552)
d) Barley (Karan-4, Jyoti)
e) Lentil (JL-1, Malika)

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madhya Pradesh</td>
<td>Guna (North West Madhya Pradesh)</td>
<td>Medium runoff and High yield gap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Guna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid, Hot dry sub humid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 100%</td>
</tr>
<tr>
<td></td>
<td>Deep loamy and clayey mixed red and black soils, Medium and deep clayey black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1222</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1511</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120-180</td>
</tr>
</tbody>
</table>

Soil and water conservation
- Sowing across the slope and ridging later
- Compartmental bunds for raising crops on conserved soil moisture

Crop management
- **Varieties**: JJ-741, JJ-938, JJ-1041
- **Hybrids**: CSH-15, CSH-16, CSH-18, SPV-1616
- **Seed rate**: Varieties: 8 – 10 kg/ha kg/ha
 Hybrids: 5 – 6 kg/ha
Districtwise Promising Technologies for Rainfed Cereals based Production System in India

- **Planting Pattern**: Varieties: 45 x 12-15 cm
 Hybrids: 45 x 15-20 cm

- **Nutrient management**: 80 kg N + 40 kg P$_2$O$_5$/ha + 6t kg/ha FYM + Azospirillum

Suitable cropping systems
- Sorghum + pigeonpea
- Sorghum - chickpea

Farm implements / tools
- Dryland weeder
- Seed cum ferti drill

Alternate Farming Systems
- **Fodder/ green biomass**: Leucaena, Melia azadirachta, Dichrostachys cineraria, Albizia amara, A.lebbeck, Hardwickia binata, A.nilotica
- **Fruit**: Emblica officinalis (amla), Guava, Ber, Mango
- **Medicinal/ Aromatic Plants**: Rauvolfia serpentina, Vetiver zyzanoides, Palma rosa, Safed musli, Asgand.
- **Vegetables**: Bottle gourd, Brinjal, Tomato, Chillies, Cowpea, Okra
- **Animal Component**: Female Cattle, Male Cattle, Female Buffaloes, Goat, Poultry
MAHARASHTRA

In Maharashtra there are two districts viz. Buldana and Akola under low runoff and medium yield gap region and five districts viz. Nanded, Latur, Amaravati, Yavatmol and Wardha under medium runoff and high yield gap region. The trends in area, production and productivity of sorghum in Madhya Pradesh (1980 - 2005) are shown in Fig. 10.

Agro-geographic setting

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maharashtra</td>
<td>Buldana and Akola (Eastern Maharashtra Plateau)</td>
<td>Low runoff and Medium yield gap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Buldana</th>
<th>Akola</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 75%; Vertisols – 25%; Medium and deep clayey shallow black soils, loamy to clayey black soils</td>
<td>Vertic soils – 60%; Vertisols – 40%; Medium and deep clayey black shallow soils, loamy to clayey black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>901</td>
<td>878</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1648</td>
<td>1730</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120-150</td>
<td>120-150</td>
</tr>
</tbody>
</table>

Crop management

- **Varieties:** CSH –5, CSH-9, CSH-14, CSH-15, CSH-16, CSH-18, SPV-1616
- **Seed rate:** 10 kg/ha
- **Planting pattern:** 45 X 15 cm
- **Nutrient management:** 80 kg N + 40 kg P$_2$O$_5$/ha + 6 t kg/ha FYM
Fig. 10. Trends in Area, Production and Productivity of Sorghum in Maharashtra (1980-2005)
Suitable cropping systems

- Sorghum– safflower
- Cotton + sorghum + pigeonpea + sorghum (CSH - 9) in 6:1:2:1 row ratio
- Sorghum + greengram in paired planting (30-60 cm)
- Sorghum + black gram in paired planting (30-60 cm)
- kharif sorghum or + pigeonpea in 6:1 proportion spaced at 45 cm rows
- Keep the sorghum field free of weeds by hoeing and weeding for the first 40 days after sowing

Farm implements / tools

<table>
<thead>
<tr>
<th>Tools, implements</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manually operated fertilizer drill</td>
<td>Simple two row tool for top dressing (hand metered)</td>
</tr>
<tr>
<td>Bullock drawn serrated blade for interculture</td>
<td>Two rows, improved blades for intercultivation.</td>
</tr>
</tbody>
</table>

Alternate Farming Systems

- **Alley cropping:** Sorghum and *leucaena* in alley (9 m width)
- **Fodder/green biomass:** Stylo sole and stylo-marvel pastural system recorded higher green fodder yield than sole or combination of grasses. *Leucaena leucocephala, A.lebbeck, D.sissoo, A.indica, A.procera, Gliricidia*
- **Fruit:** Ber agro-horticulture system (Ber+short duration Legume crop) was found more remunerative than anola and custard apple horticulture system. Pomegranate Ber, Mango, Sapota, Guava, Tamarind
- **Medicinal & Aromatic Plants:** *Solanium viarum, Catharanthus roseus, Palma rosa, Vetiveria zyzanoides, Ocimum viride*
- **Vegetables:** Onion, Chilli, Brinjal, Okra, Amaranthus, Bottle gourd
- **Animal Component:** Female Cattle, Male Cattle, Female Buffaloes, Goat, Poultry

Contingent planning

- **Regular Monsoon :**
 The regular monsoon starts by 24th meteorological week. For regular monsoon the following recommendations stand.
- **Light soils (depth 20 to 30-35 cm)**
 - Graded bunding of lands
 - Growing of strips of erosion resistant crops (Greengram-Kopergaon/blackgram-T-9) in the upper half of the plot and sorghum (CSH-9) in the lower half of the plot.
- **Medium deep soils (35-40 cm to 75 cm depth)**
 - Cotton AKH-84635 with greengram (Kopergaon) as an intercrop in 1:1 row ratio.
 - Sorghum CSH-9 with intercrop of greengram/ blackgram in 1:1 row ratio.
 - Groundnut intercropped with sunflower in the row ratio of 6:2 (Groundnut : JL-24, Sunflower-modern)
• **Deep soils (75 cm depth)**
 - Cotton – inter specific cultivation of Hirsutum Cotton AKA-7 with AKH-4 cotton.
 - Hybrid cotton AKH 4
 - Sorghum CSH-9/CSH-5 intercropped with pigeonpea (C-11) in 6:2 row ratio

• **Delayed onset of monsoon by 15 days:**
 If the rains start by end of June, the sowing may start in the first week of July. The following changes should be made in the cropping plans.
 - Area under cotton be reduced and replaced by sorghum.
 - Sowing of sorghum should be completed before 10th July. Sorghum CSH-1 variety be sown instead of CSH-5/CSH-9.
 - Area under greengram/ blackgram should be replaced by early pigeonpea varieties such as ICPL-8863 or ICPL-87119
 - Area under groundnut be reduced and replaced by sunflower (EC-68414)

• **Regular monsoon followed by long gaps:**
 - Wherever possible, life-saving irrigation be given.
 - Cotton can sustain some stress, but sorghum, groundnut, gram are not able to sustain such stress. Therefore, use of some conditioner such as spray of urea, not exceeding to 2 per cent concentration, may be useful.
 - If there is a total failure of crop, sowing of photo-insensitive crops such as bajra (BJ-104) or sunflower (EC-68414) may be attempted.
 - In deep soils, the land may be tilled properly, in case, kharif crop fails, to follow rabi crop safflower (N-7), pigeonpea (C-11) in September.

• **Continued monsoon**
 - Advantage of this situation be exploited for double cropping with safflower and gram. Safflower (No.7) may be sown after sorghum till 15th October. Beyond 15th October gram may be sown.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maharashtra</td>
<td>Nanded and Latur (Central Maharashtra Plateau)</td>
<td>Medium runoff and high yield gap</td>
</tr>
<tr>
<td></td>
<td>Amravati and Yavatmal (Eastern Maharashtra Plateau)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wardha (Eastern Maharashtra Plateau, Maharashtra State)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Nanded</th>
<th>Latur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot semi arid</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertisols – 60%; Vertisols – 40%</td>
<td>Vertic soils – 100%</td>
</tr>
<tr>
<td></td>
<td>Shallow and Medium loamy, medium and deep clayey black soils</td>
<td>Shallow and medium loamy black soils, deep clayey black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>915</td>
<td>891</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1789</td>
<td>1861</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120-150</td>
<td>90-150</td>
</tr>
</tbody>
</table>
Soil and water conservation

- Compartamental bunding
- Ridges and furrows prior to sowing
- Marvel –8 grass on bunds for protection of bunds
- Contour live bunds of Marvel-8 or Leucaena
- *Leucaena* lopping mulch at 3.5 t/ha

Crop management

- **Varieties** :
 - M.35-1: Recommended for drought-prone area and medium deep soils.
 - Phule Yashoda: Recommended for deep soils
 - Mauli: Recommended for drought prone area & light soils
 - Sel. –3: Recommended for light soils
 - Sweta, Swati: Deep soils

- **Seed rate**: 10 kg/ha

- **Planting Pattern**: 45 x 20 cm

- **Nutrient management**: 60 kg N + 30 kg P₂O₅ + 30 kg K₂O.

Farm Implements / tools

<table>
<thead>
<tr>
<th>Tool/Implement</th>
<th>Cost</th>
<th>Operation carried</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Tractor multicrop planter</td>
<td>Rs.22800/-</td>
<td>Sowing of rabi sorghum was done on farmer's field. Minor modifications made in the original design for adoption of the machine in dryland region. Awareness was created amongst the farmers by conducting demonstrations on farmer's field. The farmers were satisfied with operation of this machine.</td>
</tr>
<tr>
<td>2) Bullock drawn Jyoti Planter.</td>
<td>Rs.7500/-</td>
<td>The field trials were conducted and the machine is recommended for sowing the crops of dryland region.</td>
</tr>
<tr>
<td>3) Weeders developed by Maharashtra Agro Industries Development Corporation Ltd. (MAIDC)</td>
<td>Rs.410/-</td>
<td>These weeders were tested on farmer’s field and identified for weeding and interculturing in row crops.</td>
</tr>
<tr>
<td>4) Tractor drawn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Single bottom reversible plough.</td>
<td>Rs.18500/-</td>
<td>Tested on farmers’ field for ploughing and identified for ploughing operations in dryland region as the field operation was effective and economical.</td>
</tr>
<tr>
<td>b) Double bottom reversible plough.</td>
<td>Rs.23600/-</td>
<td></td>
</tr>
<tr>
<td>5) Bund former</td>
<td>Rs.1050/-</td>
<td>Bund formers were tested and found suitable for compartmental bunding.</td>
</tr>
<tr>
<td>6) Baliram plough</td>
<td>Rs.2500/-</td>
<td>Identified for moisture conservation practices like ridges and furrows and compartmental bunding.</td>
</tr>
<tr>
<td>7) Kopergaon bullock drawn two bowl seed drill.</td>
<td>Rs.9000/-</td>
<td>The local made seed drill named “Kopergaon seed drill” is operated on the field for sowing crops like sorghum, pearl millet, pigeon pea etc. and identified for sowing of the crops of dryland region.</td>
</tr>
</tbody>
</table>
Alternate Farming Systems

- **Silvipasture**: *Leucaena* + Marvel – 8
- **Alley cropping**: Ber (20 m alleys) + pearl millet + pigeonpea for shallow soils
- **Fodder**: Maize (African Tall) Oats (Kent), Stylo hamata
- **Fodder/ green biomass**: *Dalbiza sissoo*, *Albizia lebbeck*, *Anogeissus latfolia*, *Sesbania Stylo Marvel – 8 grass*
- **Fruit**: Ber, custard apple, pomegranate, amla+kharif spreading crops
- **Medicinal/ Aromatic Plants**: *Catharanthus roseus*, *Palma rosa*, *Vetiveria zyzanoides*, *Rose Geranium*
- **Vegetables**: Onion, Tomato, Okra, Cowpea, Cluster bean, Drumstick
- **Animal Component**:
 - Cow breeds: Gir, Jersey, HF
 - Poultry: White Leghorn
 - Rams
 - Male/ female cattle, female buffaloes, sheep, goat

Alternate Land Use Systems

- Lands < 22.5 cm depth of soil should be cultivated with Agroforestry and dryland horticulture including Ber, Custard apple, Aonla, Wood apple, Jambhul etc.
- On light soils ber cultivation at 20x5 m spatial arrangement associated with pearl millet + pigeonpea (2:1) intercropping within two rows of Ber plantation was recommended.
- Silvipastoral system of Subabul + Marvel-8 with cutting of the alternate trees at 7th year onwards for fuel is also recommended.
- For productivity increment in scarcity area the pearl millet + pigeonpea (2:1) intercropping or Ber (5x5 m) + moth bean (8 lines) is advocated.

Contingent Planning

Mid season corrections during *kharif* with soil having depth upto 45 cm for the scarcity zone.

- **2nd Fortnight of June**: All *kharif crops*
- **1st Fortnight of July**: Pearl millet, Setaria, Groundnut, Castor, Pigeonpea, Horsegram
 - Intercropping of pearl millet + pigeonpea (2:1),
 - Cluster bean + pigeonpea (2:1),
 - Cluster bean + castor (2:1),
 - Sunflower + pigeonpea (2:1)
- **2nd Fortnight of July**: Sunflower, Pigeonpea, Horsegram, Setaria,
 - Castor, Pearl millet (ergot resistant),
 - Intercropping of Sunflower + pigeonpea (2:1)
Agro-geographic setting

<table>
<thead>
<tr>
<th></th>
<th>Amravati</th>
<th>Yavatmal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 85%; Vertisol= 15%; Medium and deep clayey black soils</td>
<td>Vertic soils – 100%; Medium and deep clayey black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>976</td>
<td>1133</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1770</td>
<td>1775</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120-150</td>
<td>120-150</td>
</tr>
</tbody>
</table>

Soil and water conservation
- On sloppy land contour cultivation along vegetative hedge of vetiver or Leucaena at 0.5 m vertical interval.
- Broad bed furrows
- Compartmental bunding
- Sowing across the slope
- Contour farming (cultivation and sowing along contour)

Crop management
- **Varieties**: CSH –5, CSH-9, SPV-102, CSH-14, CSV-15, CSH-16, SPV-1616
- **Seed rate**: 10 kg/ha
- **Planting Pattern**: 45 X 15 cm
- **Nutrient management**: 80 kg N + 40 kg P₂O₅.

Suitable cropping systems
- Sorghum– safflower
- Cotton + sorghum + pigeonpea + sorghum in 6:1:2:1 row ratio
- Sorghum + greengram in paired planting (30-60 cm)
• Sorghum + black gram in paired planting (30-60 cm)
• Sorghum + pigeon pea in 6:1 proportion spaced at 45 cm rows
• Sorghum (fodder) + chickpea
• Keep the sorghum field free of weeds by hoeing and weeding for the first 40 days after sowing

Farm implements / tools

<table>
<thead>
<tr>
<th>Tools, implements</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manually operated fertilizer drill</td>
<td>Simple two row tool for top dressing (hand metered)</td>
</tr>
<tr>
<td>Bullock drawn serrated blade for interculture</td>
<td>Two rows, improved blades for intercultivation.</td>
</tr>
</tbody>
</table>

Alternate Farming Systems

• **Alley cropping**: Sorghum and *leucaena* in alley (9 m width)
• **Fodder/green biomass**: Stylo sole and stylo-marvel pastural system recorded higher green fodder yield than sole or combination of grasses. *Leucaena leucocephala, A.lebbeck, D.sissoo, A.indica, A.procera, Gliricidia*
• **Fruit**: Ber agro-horticulture system (Ber+short duration Legume crop) was found more remunerative than anola and custard apple horticulture system.
• **Pomegranate Ber, Mango, Sapota, Guava, Tamarind**
• **Medicinal & Aromatic Plants**: *Solanum viarum, Catharanthus roseus, Palma rosa, Vetiveria zyzanoides, Ocimum viride*
• **Vegetables**: Onion, Chilli, Brinjal, Okra, Amaranth, Bottle-gourd
• **Animal Component**: Female Cattle, Male Cattle, Female Buffaloes, Goat, Poultry

Contingent planning

• **Regular Monsoon**
 The regular monsoon starts by 24th meteorological week. For regular monsoon the following recommendations stand.
• **Light soils (depth 20 to 30-35 cm)**
 • Graded bunding of lands
 • Growing of strips of erosion resistant crops (Greengram-Kopergaon/blackgram-T-9) in the upper half of the plot and sorghum (CSH-9) in the lower half of the plot.
• **Medium deep soils (35-40 cm to 75 cm depth)**
 • Cotton AKH-84635 with greengram (Kopergaon) as an intercrop in 1:1 row ratio.
 • Sorghum CSH-9 with intercrop of greengram/ blackgram in 1:1 row ratio.
 • Groundnut intercropped with sunflower in the row ratio of 6:2 (Groundnut : JL-24, Sunflower-morden)
• **Deep soils (75cm depth)**
 • Cotton – inter specific cultivation of *Hirsutum* Cotton AKA-7 with AKH-4 cotton.
 • Hybrid cotton AKH-4
• Sorghum CSH-9/CSH-5 intercropped with pigeonpea (C-11) in 6:2 row ratio

• **Delayed onset of monsoon by 15 days:**
 • If the rains start by end of June, the sowing may start in the first week of July. The following changes should be made in the cropping plans.
 • Area under cotton be reduced and replaced by sorghum.
 • Sowing of sorghum should be completed before 10th July. Sorghum CSH-1 variety be sown instead of CSH-5/CSH-9.
 • Area under greengram/ blackgram should be replaced by early pigeonpea varieties such as ICPL-8863 or ICPL-87119
 • Area under groundnut be reduced and replaced by sunflower (EC 68414)

• **Regular monsoon followed by long gaps:**
 • Wherever possible, life-saving irrigation be given.
 • Cotton can sustain some stress, but sorghum, groundnut, chickpea are not able to sustain such stress. Therefore, use of some conditioner such as spray of urea, not exceeding to 2 per cent concentration, may be useful.
 • If there is a total failure of crop, sowing of photo-insensitive crops such as bajra (BJ-104) or sunflower (EC-68414) may be attempted.
 • In deep soils, the land may be tilled properly, in case, kharif crop fails, to follow rabi crop safflower (N-7), pigeonpea (C-11) in September.

• **Continued monsoon**
 • Advantage of this situation be exploited for double cropping with safflower and chickpea. Safflower (No.7) may be sown after sorghum till 15th October. Beyond 15th October chickpea may be sown.

Agro-geographic setting

<table>
<thead>
<tr>
<th>Wardha</th>
<th>Climate</th>
<th>Hot dry sub humid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td>Vertic soils – 100%</td>
<td>Shallow and medium loamy to clayey black soils, deep clayey black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1144</td>
<td></td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1788</td>
<td></td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>150-180</td>
<td></td>
</tr>
</tbody>
</table>

Soil and water conservation

• On sloppy land contour cultivation along vegetative hedge of *vetiver or Leucaena* at 0.5 m vertical interval.
• Broad bed furrows
• Compartmental bunding
• Sowing across the slope
• Contour farming (cultivation and sowing along contour)
Crop management

- Varieties: CSH –5, CSH-9, SPV-102
- Seed rate: 10 kg/ha
- Planting Pattern: 45 X 15 cm
- Nutrient management: 80 kg N + 40 kg P₂O₅

Suitable cropping systems

- Sorghum– safflower
- Cotton + sorghum + pigeonpea + sorghum in 6:1:2:1 row ratio
- Sorghum + greengram in paired planting (30-60 cm)
- Sorghum + black gram in paired planting (30-60 cm)
- Sorghum + pigeonpea in 6:1 proportion spaced at 45 cm rows
- Sorghum (fodder) + chickpea
- Keep the sorghum field free of weeds by hoeing and weeding for the first 40 days after sowing

Farm implements / tools

<table>
<thead>
<tr>
<th>Tools, implements</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manually operated fertilizer drill</td>
<td>Simple two row tool for top dressing (hand metered)</td>
</tr>
<tr>
<td>Bullock drawn serrated blade for interculture</td>
<td>Two rows, improved blades for intercultivation.</td>
</tr>
</tbody>
</table>

Alternate Farming Systems

- Alley cropping: Sorghum and leucaena in Alley (9 m width)
- Fodder/green biomass: Stylo sole and stylo-marvel pastural system recorded higher green fodder yield than sole or combination of grasses. *Leucaena leucocephala, A.lebbeck, D.sissoo, A.indica, A.procera, Gliricidia*
- Fruit: Ber agro-horticulture system (ber+short duration Legume crop) was found more remunerative than anola and custard apple horticulture system, Pomegranate Ber, Mango, Sapota, Guava, Tamarind
- Medicinal & Aromatic Plants: *Solanum viarum, Catharanthus roseus, Palma rosa, Vetiveria zyizanoides, Ocimum viride*
- Vegetables: Onion, Chilli, Brinjal, Okra, Amaranthus, Bottle-gourd
- Animal Component: Female Cattle, Male Cattle, Female Buffaloes, Goat, Poultry

Contingent planning

- Regular Monsoon
 - The regular monsoon starts by 24th meteorological week. For regular monsoon the following recommendations stand.
- Light soils (depth 20 to 30-35 cm)
 - Graded bunding of lands
Growing of strips of erosion resistant crops (Greengram-Kopergaon/blackgram-T-9) in the upper half of the plot and sorghum (CSH-9) in the lower half of the plot.

Medium deep soils (35-40 cm to 75 cm depth)
- Cotton AKH-84635 with greengram (Kopergaon) as an intercrop in 1:1 row ratio.
- Sorghum CSH-9 with intercrop of greengram/ blackgram in 1:1 row ratio.
- Groundnut intercropped with sunflower in the row ratio of 6:2 (Groundnut : JL-24, Sunflower-morden)

Deep soils (75cm depth)
- Cotton – inter specific cultivation of *Hirsutum* Cotton AKA-7 with AKH-4 cotton.
- Hybrid cotton AKH-4
- Sorghum CSH-9/CSH-5 intercropped with pigeonpea (C-11) in 6:2 row ratio

Delayed onset of monsoon by 15 days:
- If the rains start by end of June, the sowing may start in the first week of July. The following changes should be made in the cropping plans.
- Area under cotton be reduced and replaced by sorghum.
- Sowing of sorghum should be completed before 10th July. Sorghum CSH-1 variety be sown instead of CSH-5/CSH-9.
- Area under greengram/ blackgram should be replaced by early pigeonpea varieties such as ICPL-8863 or ICPL-87119
- Area under groundnut be reduced and replaced by sunflower (EC-68414)

Regular monsoon followed by long gaps:
- Wherever possible, life-saving irrigation be given.
- Cotton can sustain some stress, but sorghum, groundnut, chickpea are not able to sustain such stress. Therefore, use of some conditioner such as spray of urea, not exceeding to 2 per cent concentration, may be useful.
- If there is a total failure of crop, sowing of photo-insensitive crops such as bajra (BJ-104) or sunflower (EC-68414) may be attempted.
- In deep soils, the land may be tilled properly, in case, kharif crop fails, to follow rabi crop safflower (N-7), pigeonpea (C-11) in September.

Continued monsoon
- Advantage of this situation be exploited for double cropping with safflower and chickpea. Safflower (No.7) may be sown after sorghum till 15th October. Beyond 15th October chickpea may be sown.
In Rajasthan there are three districts viz. Bhilwara, Tonk and Jaipur under low runoff and high yield gap region and four districts viz. Sawaimadhopur, Kota, Jalawar and Chittorgarh under medium runoff and high yield gap region. The trends in area, production and productivity of sorghum in Rajasthan (1980 - 2005) are shown in Fig. 11.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajasthan</td>
<td>Bhilwara (East Rajasthan Uplands)</td>
<td>Low runoff and High yield gap</td>
</tr>
<tr>
<td></td>
<td>Tonk and Jaipur (Central East Rajasthan)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Bhilwara</th>
<th>Tonk</th>
<th>Jaipur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot dry semi arid</td>
<td>Hot dry semi arid</td>
<td>Hot semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 100%</td>
<td>Inceptisols – 100%</td>
<td>Inceptisols – 100%</td>
</tr>
<tr>
<td></td>
<td>Deep loamy grey brown and alluvium - derived soils</td>
<td>Deep loamy grey brown and alluvium - derived soils</td>
<td>Deep loamy alluvium - derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>658</td>
<td>703</td>
<td>647</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1559</td>
<td>1597</td>
<td>1745</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>90-120</td>
<td>90-120</td>
<td>90-120</td>
</tr>
</tbody>
</table>

Soil and water conservation

- More emphasis on *in situ* water conservation
- Increasing soil infiltration capacity and reducing soil crusting problem
- Contour furrowing
- Absorption terracing
- Contour trenches
Fig. 11. Trends in Area, Production and Productivity of Sorghum in Rajasthan (1980-2005)
• Inter-row water harvesting
• Inter-plot water harvesting of 1:1 cropped to un-cropped land
• Dead furrows at 3.6 m interval
• Indigenous Water harvesting structures

Crop management
• Varieties: CSH-6, CSH-14, SPV-245, GJ-38, SPV-1736
 Fodder – GFS -4
• Seed rate: 10 kg/ha
• Planting Pattern: 45 cm rows
• Nutrient management: 50 kg N + 30 kg P₂O₅. N in 2 splits ½ as basal and ½ at knee high stage

Suitable cropping systems
• Sorghum / maize-mustard
• Sorghum fodder - mustard

Farm implements / tools
• Two bowl seed cum fertilizer drill

Alternate Farming Systems
• Marginal lands:
 • Silviculture: Acacia tortilis
 • LCC III: Alley cropping (Jatropha spp + Greengram)
 • LCC IV: Silvipastoral system (Prosopis cineraria + Cenchrus)
• Horti – Pastoral system: Ber + Cenchrus setigerus
• Fodder/ green biomass: Ailanthus excelsa, Albizia lebbeck, D. sissoo, Azadirachta indica, Prosopis cineraria, Dichrostachys
 • Fruit: Ber, Date palm, Jamun, Fig. Phalsa, Koronda
 • Medicinal/ Aromatic Plants: Plantago ovata, Cassia angustifolia, Safed musli, Papaver somniferum
 • Vegetables: Cluster bean, Cowpea, Amaranth, Round melon, Long melon
 • Animal Component: Male/female cattle, female buffaloes, sheep, goat

Contingent Planning
• Good and normal rainfall
 Grow large areas under improved varieties of cereals, pulses and oilseeds during kharif on heavy soils, conserve soil moisture during kharif and take a early rabi crop of mustard or chickpea.
• Normal onset followed by long gaps in rainfall
Drought hardy crops with deep root system and low water requirement like sorghum, castor, pigeonpea, sesame should be preferred over maize.

- **Delayed onset of monsoon**:
 Grow early maturing pulses (greengram blackgram), oilseeds (sesame) and fodder crops (sorghum + cowpea). Intercropping of maize + blackgram / pigeon pea, groundnut + sesame is recommended.

- **Early withdrawal of monsoon**:
 Conserve the soil moisture received during last season and grow early *rabi* crops like mustard, chickpea, safflower etc.

Agro-geographic setting

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajasthan</td>
<td>Sawaimadopur (Central East Rajasthan Uplands)</td>
<td>Medium runoff and High yield gap</td>
</tr>
<tr>
<td></td>
<td>Kota and Jhalawar (South East Rajasthan)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chittorgarh (Southern Rajasthan)</td>
<td></td>
</tr>
</tbody>
</table>

Soil and water conservation

- More emphasis on *in situ* water conservation
- Increasing soil infiltration capacity and reducing soil crusting problem
- Contour furrowing
- Absorption terracing
- Contour trenches
- Inter-row water harvesting
- Inter-plot water harvesting of 1:1 cropped to un-cropped land
- Dead furrows at 3.6 m intervals

Crop management

- **Varieties**: CSH-6, CSH-14, SPV-1736
- **Seed rate**: 10 kg/ha
• **Planting Pattern:** 45 cm rows
• **Nutrient management:** 50 kg N + 30 kg P_2O_5. N in 2 splits ½ as basal and ½ at knee high stage

Suitable cropping systems
- Sorghum / maize-mustard
- Sorghum fodder - mustard

Farm implements / tools
- Two bowl seed cum fertilizer drill

Alternate Farming Systems
- Marginal lands:
- Silviculture: *Acacia tortilis*
- LCC III: Alley cropping (Jatropha spp + Greengram)
- LCC IV: Silvipastoral system (*Prosopis cineraria + Cenchrus*)
- Horti – Pastoral system: *Ber + Cenchrus setigerus*
- Fodder/ green biomass: *Ailanthus excelsa, Albizia lebbeck, Dalbizia sissoo, Azadirachta indica, Prosopis cineraria, Dichrostachys*
- Fruit: *Ber, Date palm, Jamun, Fig, Phalsa, Koronda*
- Medicinal/ Aromatic Plants: *Plantago ovata, Cassia angustifolia, Safed musli, Papaver somniferum*
- Vegetables: Clusternbean, Cowpea, Amaranthus, Round melon, Long melon
- Animal Component: Male/female cattle, female buffaloes, sheep, goat

Contingent Planning
- **Good and normal rainfall:**
 Grow large areas under improved varieties of cereals, pulses and oilseeds during kharif on heavy soils, conserve soil moisture during kharif and take a early rabi crop of mustard or chickpea.
- **Normal onset followed by long gaps in rainfall:**
 Drought hardy crops with deep root system and low water requirement like sorghum, castor, pigeonpea, sesame should be preferred over maize.
- **Delayed onset of monsoon:**
 Grow early maturing pulses (greengram blackgram), oilseeds (sesame) and fodder crops (sorghum + cowpea). Intercropping of maize + blackgram / pigeon pea, groundnut + sesame is recommended
- **Early withdrawal of monsoon:**
 Conserve the soil moisture received during last season and grow early rabi crops like mustard, chickpea, safflower etc.
TAMIL NADU

In Tamil Nadu there are two districts viz. Tiruchirapalli and Dharmapuri under medium runoff and high yield gap region. The trends in area, production and productivity of sorghum in Tamil Nadu (1980 - 2005) are shown in Fig. 12.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamil Nadu</td>
<td>Tiruchirapalli (Tamil Nadu Uplands)</td>
<td>Medium runoff and High yield gap</td>
</tr>
<tr>
<td></td>
<td>Dharmapuri (Western plains)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Tiruchirapalli</th>
<th>Dharmapuri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Orthids – 25%; Sandy Alfisol – 75%</td>
<td>Sandy Alfisols – 100%, Deep red loamy soils</td>
</tr>
<tr>
<td></td>
<td>Deep red loamy soils</td>
<td>Deep red loamy soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>869</td>
<td>876</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>2091</td>
<td>1651</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120-150</td>
<td>120-150</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Soil water balance studies
- Runoff-erosion measurements
- More emphasis on *in situ* water conservation
- Increasing soil infiltration capacity and reducing soil crusting problem
- Inter-plot water harvesting of 1:1 cropped to uncropped land
- Dead furrows at 3.6 m interval
Fig. 12. Trends in Area, Production and Productivity of Sorghum in Tamilnadu (1980-2005)
Absorption/drainage type terraces
On sloppy land contour cultivation along vegetative hedge of Vetiver or Leucaena at 0.5 m V.I. in sorghum and cotton crops.

Crop management
- **Varieties**: K-Tall, K-8, K-3 for fodder
- **Seed rate**: 10 kg/ha
- **Planting Pattern**: 45 x 15 cm
- **Nutrient management**: 40 kg N + 20 kg P₂O₅ as enriched FYM

Suitable cropping systems
- Sorghum + blackgram
- Sorghum + cowpea
- Sorghum + greengram
- Sorghum + siratro (fodder) (1:1)
- **Some other important practices**
 - Deep ploughing with mould board plough
 - Dibbling with compaction

Alternate Farming Systems
- **Alley cropping**: Subabul (6 m width) + Sorghum/ Pearlmillet/ Pigeonpea, Subabul (6 m width) + mulching with Subabul leaves in alleys + Cotton/blackgram/Sunflower
- **Agroforestry**: Tamarind/Neem + Sorghum (K-8), Tamarind/Neem + blackgram (C0-5)
- **Agro-horti system**: Tamarind (PKM-1) + blackgram (K-1)
- **Silvipasture**: Ailanthus excelsa + blackgram, Ailanthus excelsa + Dinanath grass
- **Fodder/ green biomass**: Ailanthas excelsa, Albizia lebbeck, Leucaena leuecocephala Hardwickia binata, A.indica
- **Fruit**: Mango, Sapota, Fig, Jamun, Pomegranate
- **Medicinal/ Aromatic Plants**: Cassia aungstifolia, Palma rosa, Vetiveria zyzanoides, Jasmine, Rose geranium
- **Vegetables**: Okra, Bittergourd, Ridge gourd, Chilles, Brinjal, Amaranthus.
- **Animal Component**: Sheep, Goat

Integrated Farming System
In dryland maintenance of two milch cows along with agricultural component indicated that percentage contribution of agricultural component to the total gross and net income of Integrated Farming system was 10 and 6.7 per cent as compared to the percentage contribution of dairy component with 90 and 93.3 per cent.
Contingent planning

- Normal monsoon conditions: With the onset of North-East monsoon in September – October, crops like sorghum, cotton, bajra, pulses and oilseeds can be sown. Sorghum (K.Tall or K-8) may be sown during the month of September.

- Delayed onset of monsoon: If the rains received late in October, bajra (WCC75) can be sown. Pulses like blackgram, greengram, and oilseeds like sunflower (K-1) can be grown if the rains are received later.

- Very delayed monsoon: Sunflower (K-1), Gingelly (TMV-3), Senna and Coriander can be sown up to the first week of November under very delayed monsoon conditions.

- Early withdrawal of monsoon: Short duration crops like bajra (Co.6 and X 4) with 75 days duration and sunflower (K-1) with 65 days duration are grown.

Cultural practices like shallow intercultural to eradicate weeds, maintain soil mulch to conserve soil moisture, application of surface mulch, thinning of crops by removing alternate rows as in bajra and recycling of stored runoff.
UTTAR PRADESH

In Uttar Pradesh there are five districts viz. Fatehpur, Banda, Hamirpur, Jhansi and Lalitpur under medium runoff and high yield gap region. The trends in area, production and productivity of sorghum in Uttar Pradesh (1980 - 2005) are shown in Fig. 13.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uttar Pradesh</td>
<td>Fatehpur (Ganga – Yamuna Doab)</td>
<td>Medium runoff and high yield gap</td>
</tr>
<tr>
<td></td>
<td>Banda, Hamirpur, Jhansi and Lalitpur (Bundlekhand uplands)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Fatehpur</th>
<th>Banda</th>
<th>Hamirpur</th>
<th>Jhansi</th>
<th>Lalitpur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Inceptisols–100%, Deep loamy alluvium - derived soils</td>
<td>Inceptisols–100%, Deep loamy and clayey mixed red and black soils</td>
<td>Inceptisols–100%, Deep loamy and clayey mixed red and black soils</td>
<td>Inceptisols–100%, Deep loamy and clayey mixed red and black soils</td>
<td></td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>885</td>
<td>1005</td>
<td>998</td>
<td>999</td>
<td>804</td>
</tr>
<tr>
<td>Potential evapotranspiration(mm)</td>
<td>1464</td>
<td>1455</td>
<td>1481</td>
<td>1516</td>
<td>1489</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120-150</td>
<td>120-150</td>
<td>120-150</td>
<td>120-150</td>
<td>120-150</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Sowing across the slope and ridging later
- Compartmental bunds for raising crops on conserved soil moisture
Fig. 13. Trends in Area, Production and Productivity of Sorghum in Uttar Pradesh (1980-2005)

- **Area (000 ha)**
 - 1980: 350
 - 2004: 50

- **Production (000 t)**
 - 1980: 300
 - 2004: 50

- **Productivity (kg/ha)**
 - 1980: 1200
 - 2004: 200
Crop management

- **Varieties**: CSH-15, SPV-1616
- **Seed rate**: 5 –6 kg/ha (Hybrid), 10 kg/ha (Varieties)
- **Planting Pattern**: 45 x 15 –20 cm
- **Integrated Nutrient Management**:
 - 80 kg N + 40 kg P₂O₅/ha + FYM @ 6t/ha + 3 tonnes of subabal/h + 30 kg N + 20 kg P₂O₅/ha

Suitable cropping systems

- Sorghum + pigeonpea (2: 1)
- Sorghum - chickpea
- Fodder sorghum – safflower
- Fodder sorghum – chickpea/lentil/mustard/ for black soils

Farm implements / tools

- Dryland weeder
- Seed cum ferti drill

Alternate Farming Systems

- Ley farming Four year continuum raising of stylosanthes harmeta – sorghum
- Forage Sorghum – safflower
- Forage Sorghum – chickpea / lentil / mustard
- Fodder cowpea / sesbania + grain sorghum
- Pigeonpea + Forage sorghum / Teosinte / Maize / Pearl millet / Sudan grass / Cowpea / Cluster bean / Sunhemp
- **Fodder/ green biomass**: *Leucaena, Melia azadirach, Dichro stachys cineraria, Albizzia amara, A.lebbeck, Hardwickia binata, A.nilotica*
- **Fruit**: Emblica officinalis [amla] , Guava, Ber, Mango
- **Medicinal/ Aromatic Plants**: *Rauvolfia serpentina, Vetivera zyzanoides, Palma rosa, Safed musli, Aswagandha.*
- **Vegetables**: Bottle gourd, Brinjal, Tomato, Chillies, Brinjal, Cowpea, Okra
- **Animal Component**: Female Cattle, Male Cattle, Female Buffaloes, Goat, Poultry
Districtwise Promising Technologies for Rainfed Cereals based Production System in India

Prioritised cultural option for rainfed sorghum based production system

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Prioritised Options</th>
<th>Average Yield</th>
<th>Expected Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gujarat</td>
<td>Ahmedabad, Amreli, Bhavnagar, Mehsana, Surendran, Rohtak</td>
<td>Adoption of improved varieties, crop management technologies. In-situ soil conservation measures.</td>
<td>268</td>
<td>322 to 335</td>
</tr>
<tr>
<td>Karnataka</td>
<td>Mysore</td>
<td>Utilization of surplus water for supplemental irrigation and adoption of high yield cultivars</td>
<td>1019</td>
<td>1223 to 1274</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>Betul, Chhatapur, Dhar, Guna, Jabhua, Khandwa, Mandsaur, Shivpuri</td>
<td>Utilization of surplus water for supplemental irrigation and adoption of high yield cultivars</td>
<td>667</td>
<td>800 to 834</td>
</tr>
<tr>
<td></td>
<td>Dewas</td>
<td>Utilization of surplus water for supplemental irrigation and adoption of high yield cultivars</td>
<td>1307</td>
<td>1568 to 1634</td>
</tr>
<tr>
<td></td>
<td>Chhindwar, Khargone, Ratlam, Shahapur, Ujjain</td>
<td>Utilization of surplus water for supplemental irrigation and adoption of high yield cultivars</td>
<td>1019</td>
<td>1223 to 1274</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>Amravathi, Latur, Nanded, Yeotmal</td>
<td>Utilization of surplus water for supplemental irrigation and adoption of high yield cultivars</td>
<td>1307</td>
<td>1568 to 1634</td>
</tr>
<tr>
<td></td>
<td>Wardha</td>
<td>Utilization of surplus water for supplemental irrigation and adoption of high yield cultivars</td>
<td>1019</td>
<td>1223 to 1274</td>
</tr>
<tr>
<td></td>
<td>Akola, Buldhana</td>
<td>Water management technologies and adoption of improved cultivars and pest and disease management</td>
<td>1660</td>
<td>1909 to 1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>packages for improving productivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajasthan</td>
<td>Bhiwara, Jaipur, Tonk</td>
<td>Utilization of surplus water for supplemental irrigation and adoption of high yield cultivars</td>
<td>268</td>
<td>322 to 335</td>
</tr>
<tr>
<td></td>
<td>Chittorga, Jhalawar, Kota, Sawai Madopur</td>
<td>Utilization of surplus water for supplemental irrigation and adoption of high yield cultivars</td>
<td>667</td>
<td>800 to 834</td>
</tr>
<tr>
<td>Tamilnadu</td>
<td>Dharmapur</td>
<td>Utilization of surplus water for supplemental irrigation and adoption of high yield cultivars</td>
<td>1307</td>
<td>1568 to 1634</td>
</tr>
<tr>
<td></td>
<td>Tiruchirapalli</td>
<td>Utilization of surplus water for supplemental irrigation and adoption of high yield cultivars</td>
<td>1019</td>
<td>1223 to 1274</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>Banda, Hamirpur, Jhansi, Lalitpur</td>
<td>Utilization of surplus water for supplemental irrigation and adoption of high yield cultivars</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fatepur</td>
<td>Utilization of surplus water for supplemental irrigation and adoption of high yield cultivars</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PEARLMILLET BASED PRODUCTION SYSTEM

Pearlmillet is grown in 10.50 m ha in 346 districts out of which 9.90 m ha is rainfed. About 85% of the rainfed area (4.35 mha) is in 43 districts.

<table>
<thead>
<tr>
<th>Selection criteria</th>
<th>No. of districts</th>
<th>Area under pearlmillet ('000 ha)</th>
<th>Area under rainfed pearlmillet ('000 ha)</th>
<th>Gross cropped area ('000 ha)</th>
<th>Yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfed states (13)</td>
<td>346</td>
<td>10494</td>
<td>9898</td>
<td>167868</td>
<td>613</td>
</tr>
<tr>
<td>AESR 3-13</td>
<td>261</td>
<td>5553</td>
<td>5153</td>
<td>131273</td>
<td>673</td>
</tr>
<tr>
<td>Cumulative 85% rainfed pearlmillet area</td>
<td>43</td>
<td>4610</td>
<td>4350</td>
<td>30595</td>
<td>875</td>
</tr>
</tbody>
</table>

Growth Rates

The trends in area, production and productivity of pearlmillet in India (1980 - 2005) are shown in Fig. 14.

The area and yield growth rates for different districts are given in the following table:

<table>
<thead>
<tr>
<th>Area</th>
<th>Yield</th>
<th>State</th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stagnant</td>
<td>Increasing</td>
<td>Madhya Pradesh</td>
<td>Morena</td>
</tr>
<tr>
<td>Stagnant</td>
<td>Stagnant</td>
<td>Maharashtra</td>
<td>Pune, Jalgaon, Satara, Sangli</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uttar Pradesh</td>
<td>Aligarh, Etawah</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gujarat</td>
<td>Rajkot, Ahmedabad, Junagadh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Karnataka</td>
<td>Raichur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maharashtra</td>
<td>Nasik, Ahmednagar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rajasthan</td>
<td>Alwar, Sawai Madhopur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tamilnadu</td>
<td>South Arcot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uttar Pradesh</td>
<td>Moradabad</td>
</tr>
<tr>
<td>Decreasing</td>
<td>Stagnant</td>
<td>Gujarat</td>
<td>Bhavnagar, Amreli</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haryana</td>
<td>Gurgaon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Karnataka</td>
<td>Gulbarga, Belgaum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rajasthan</td>
<td>Bharatpur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tamilnadu</td>
<td>Tiruchinapalli</td>
</tr>
<tr>
<td>Increasing</td>
<td>Stagnant</td>
<td>Gujarat</td>
<td>Surendranagar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maharashtra</td>
<td>Aurangabad, Beed, Dhule</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uttar Pradesh</td>
<td>Baduan</td>
</tr>
<tr>
<td>Increasing</td>
<td>Increasing</td>
<td>Rajasthan</td>
<td>Jaipur</td>
</tr>
<tr>
<td>Decreasing</td>
<td>Increasing</td>
<td>Karnataka</td>
<td>Bijapur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uttar Pradesh</td>
<td>Agra, Etawah, Mathura, Allahabad</td>
</tr>
</tbody>
</table>

The yield growth rate was significantly raising in Morena, Bijapur, Jalgaon, Pune, Satara, Sangli, Jaipur, Aligarh, Mathura, Etawah, Allahabad and Etah districts. The area growth rate is significantly increasing in Dhule, Aurangabad, Beed, Surendranagar, Jaipur and Baduan districts. The area growth rate is significantly decreasing in Belgaum, Bijapur, Gulbarga, Tiruchinapalli, Amreli, Bharatpur, Gurgaon, Mathura, Agra, Etah and Allahabad districts.

Popular Production Systems in Agro-ecozones

<table>
<thead>
<tr>
<th>Pearlmillet</th>
<th>AER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearlmillet + Pigeonpea</td>
<td>3</td>
</tr>
<tr>
<td>Pearlmillet –Fallow/Wheat/ Chickpea</td>
<td></td>
</tr>
<tr>
<td>Tobacco – Pearlmillet</td>
<td>4</td>
</tr>
<tr>
<td>Pearlmillet- Fallow/ Chickpea</td>
<td></td>
</tr>
<tr>
<td>Pearlmillet + Pigeonpea</td>
<td>6</td>
</tr>
<tr>
<td>Pearlmillet+ Greengram</td>
<td></td>
</tr>
</tbody>
</table>
Farming systems

Details on associated crops and districts covered and spread of livestock population are presented below:

<table>
<thead>
<tr>
<th>Crops</th>
<th>Animals</th>
<th>Districts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorghum</td>
<td>Goats</td>
<td>Morena, Belgaum Bijapur, Raichur, Gulbarga, South Arcot,</td>
</tr>
<tr>
<td>Pearlmillet</td>
<td>Male Cattle</td>
<td>Tiruchinapalli, Nasik, Dhule, Jalagaon, Ahmednagar, Pune, Satara,</td>
</tr>
<tr>
<td>Groundnut</td>
<td>Female cattle</td>
<td>Sangli, Aurangabad, Beed, Ahmedabad, Amreli, Bhavnagar,</td>
</tr>
<tr>
<td>Cotton</td>
<td>Female Buffalo</td>
<td>Junagadh, Rajkot, Surendranagar, Sawaimadhopur, Jalna, Villupuram</td>
</tr>
<tr>
<td>Vegetables</td>
<td>Male Buffalo</td>
<td></td>
</tr>
<tr>
<td>Fruits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearlmillet</td>
<td>Female Buffalo</td>
<td>Alwar, Jaipur, Bharatpur, Gurgaon, Aligarh, Mathura, Agra, Etah,</td>
</tr>
<tr>
<td>Rapeseed mustard</td>
<td>Goats</td>
<td>Buduan, Moradabad, Etawah, Allahabad, Dholpur, Ferozbad, Dausa</td>
</tr>
<tr>
<td>Chickpea</td>
<td>Male Cattle</td>
<td></td>
</tr>
<tr>
<td>Fruits</td>
<td>Female Cattle</td>
<td></td>
</tr>
<tr>
<td>Vegetables</td>
<td>Male Buffalo</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 14. Trends in Area, Production and Productivity of Pearlmillet in India (1980-2005)
GUJARAT

In Gujarat there are three districts viz. Amreli, Bhavnagar and Junagadh under low runoff and medium yield gap region and three districts viz. Ahmedabad, Surendranagar and Rajkot under low runoff and high yield gap region. The trends in area, production and productivity of pearl millet in Gujarat (1980 - 2005) are shown in Fig. 15.

![Map of Gujarat showing the distribution of low runoff and yield gap regions](image)

Fig. 15. Trends in Area, Production and Productivity of Pearl Millet in Gujarat (1980-2005)
State	District	Region
Gujarat | Amreli (Coastal Kathiawad) | Low runoff and Medium yield gap
Bhavnagar and Junagadh (Central Kathiawad Peninsula) |

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Amreli</th>
<th>Bhavnagar</th>
<th>Junagadh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot dry semi arid, Hot moist semi arid</td>
<td>Hot dry semi arid, Hot moist semi arid</td>
<td>Hot dry semi arid, Hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Orthids – 100%, Shallow and medium loamy to clayey black soils, Deep loamy coastal alluvium - derived soils</td>
<td>Orthids – 75%; Vertic soils-25% and alluvium - derived soils, Shallow and medium loamy to clayey black soils, Deep loamy coastal alluvium - derived soils</td>
<td>Orthids – 50%; Vertic soils – 50% Shallow and medium loamy to clayey black soils, Deep black soils Deep loamy coastal alluvium - derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>607</td>
<td>602</td>
<td>702</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1877</td>
<td>1814</td>
<td>1684</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>90-150</td>
<td>90-150</td>
<td>90-150</td>
</tr>
</tbody>
</table>

Soil and water conservation
- Shallow ploughing before sowing and ridging and furrowing 25 days after sowing.
- Increasing soil infiltration capacity and reducing soil crusting problem
- Two to four intercultures along with deep ploughing in groundnut

Crop management
Summer – GHB-558, GHB-526 (Sow within 15 days of onset of monsoon for harvesting maximum fodder yield)

- **Seed rate:** 3.75 kg/ha
- **Planting pattern:** 60 X 15 cm
- **Nutrient management**
 - 80 kg N and 40 P₂O₅ / ha
 - Nirtogen in two splits (25% as basal + 75% at tillering) or Nitrogen in three splits i.e., 25% basal + 50% tillering + 25% flag leaf stage
 - Apply 80 kg N and 40 kg P₂O₅ / ha to the base crop of Pearlmillet in Pearlmillet + pigeonpea intercropping.

Suitable cropping systems

- GHB 558, GHB 577, Pusa – 23 should be grown in paired (40 cm apart with a spacing of 40 x 15 cm) in between two rows of greengram/cowpea/sesame
- Pearlmillet + greengram, pearlmillet + cowpea, pearl millet + sesame
- BJ-104 – should be grown in paired rows (40 cm apart with a spacing of 40 x 15 cm) in between two rows of pigeonpea (UPAS – 120) at a spacing of 120 x 45 cm
- Pearlmillet + pigeonpea (2:1 / 4:1)
- Pigeonpea (UPAS – 120 Hy-2) was used as mixed crop with pearlmillet (BJ-104) @ 38 kg N and 19 kg P₂O₅ /ha. Seed rates for pigeonpea and pearlmillet are 20 and 3.75 kg/ha respectively.
- Pearlmillet + kidneybean

Farm Implements / tools

- Two bowl seed cum fertilizer drill

Alternate Farming Systems

- **Fodder/ green biomass:** *Dichrostachys cineraria, Albizia lebbeck, Leucaena leucocephala, Pongamia pinnata*

 On slopy fallow lands with shallow soils – *Dicanthium annulatum*; 16 rows of groundnut (GG-2) in alleys of perennial pigeonpea (ICPL-185); 16 rows of groundnut (GG-2) in alleys of subabul (Hawai gaint)

- **Fruit:** Custard apple, Mango, Pomegranate, Phalsa, Fig, Jamun, Tamarind
- **Medicinal/ Aromatic Plants:** *Plantago ovata, Cassia angustifolia, Liquorice.*
- **Vegetables:** Cowpea, Cluster bean, Brinjal, Okra, Long melon, Drumstick.
- **Animal Component:** Female / male cattle; female buffaloes, sheep, goat

Contingent planning

- **Delay in monsoon by** 15th July to 31st July : Grow erect groundnut (GG-2, GG-5, GG-7), Sesame (G-Til-1, G.Til-2), Castor (GAUCH-1), Hybrid pearlmillet (GHB-577, GHB-558, Pusa-23), Greengram (K-851, GM-4), Blackgram (T-9, TPU-4), Pigeonpea (ICPL-87, GT-100)

 Grow erect groundnut (GG-2, GG-5, GG-7), Sesame (G-Til-1, G.Til-2), Castor
(GAUCH-1), Hybrid pearl millet (GHB-235, GHB-316, GHB-558), Greengram (K-851, GM-4), Blackgram (T-9, TPU-4), Pigeonpea (ICPL-87, GT-100)

1st August to 14th August : Grow pulses blackgram (T-9, TPU-4), forage maize / sorghum (Gundri, GFS-5), castor (GAUCH-1, GC-2) and sesame (Purva-1)

15th August to 31st August : Grow forage maize / sorghum (Gundri, GFS-5), sesame (Purva-1)

- **Drought spell after normal sowing**

 1-2 weeks after sowing : Resowing of early duration varieties or alternate crops should be recommended as under, if sufficient rainfall is received. Hybrid pearl millet (GHB-235, GHB-316, GHB-558), sorghum (GJ-39, J-41), sesame (G.Til-1, G-Til-2) and castor (GAUCH-1, GC-2), blackgram (T-9, TPU-4)

 3-5 weeks after sowing : Agricultural operations like interculturing, weeding, hoeing and mulching may be taken up, if drought spell prolongs for two weeks or more weeks. The ratooning of sorghum ay be done and top dressing of fertilizer should be suggested if sufficient rainfall after 3-5 weeks dry spell

- **Early withdrawal of monsoon**

 - Give life saving irrigation
 - Minimize moisture losses through complete removal of weeds
 - Perform interculturing to conserve soil moisture
 - Harvest the crop according to maturity of crop duration
 - Thin the plant population

- **Satisfactory late rains during September - October**

 - Relay cropping of castor, sunflower, sesame (Purva-1) and fodder sorghum
 - Second crops like rapeseed mustard and chickpea could be taken
 - Ratooning of sorghum

Soil and water conservation

- More emphasis on *in situ* water conservation
- Increasing soil infiltration capacity and reducing soil crusting problem
- Absorption terracing
Districtwise Promising Technologies for Rainfed Cereals based Production System in India

- Inter-row water harvesting
- Dead furrows at 3.6 m interval

Crop management

- **Varieties:**
 - Kharif – GHB – 558, GHB-577, Pusa – 23
 - Summer – GHB – 558, GHB-526

- **Seed rate:** 3.75 kg/ha
- **Planting pattern:** 45 x 10-15 cm
- **Nutrient management:** 80 kg N and 40 kg P₂O₅ / ha. Apply ½ recommended dose of N and whole dose of P₂O₅ as basal and remaining ½ dose of N at tillering stage depending on soil moisture content

Suitable cropping systems

- Pearlmillet + cluster bean (2:1)
- Pearlmillet + cluster bean (Malosan or HG-75) (2:2)
- Greengram + pearlmillet (3:1)
- Pearlmillet + cowpea
- Pearlmillet + sesame
- Pearlmillet + cluster bean (2:1)
- Pearlmillet + cluster bean (Malosan or HG-75) (2:2)
- Greengram + pearlmillet (3:1)
- Pearlmillet + kidney bean

Farm Implements / tools

- Seed cum ferti drill

Alternate Farming Systems

- **Fodder/ green biomass:** The farmers growing Ber (10x6 m) on light textured soils are advised to take inter crop of either greengram or sorghum (fodder), *A.lebbeck, A. indica, A. albida, Cassia siamea, D.sissoo, Alianthus excelsa*
- **Fruit:** Mango, Pomegranate, Guava, Ber, Fig, Jamun.
- **Medicinal/ Aromatic Plants:** *Plantago ovata, Cassia angustifolia, Liquorice*
- **Vegetables:** Drumstick, Cluster bean, Cowpea, Long melon, Okra.
- **Animal Component:** Female and male Cattle, Female Buffaloes and Goats

<table>
<thead>
<tr>
<th>Annual rainfall (mm)</th>
<th>823</th>
<th>601</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1678</td>
<td>1970</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>90-120</td>
<td>60-120</td>
</tr>
</tbody>
</table>
Contingent planning

- Normal sowing (Early July)
 Crops: Varieties/ hybrids
 Castor: GCH-4, GCH-5, GCH-6
 Pearlmillet: GHB 558, GHB-235, GHB-316
 Cowpea: Guj. Cowpea-4
 Clusterbean: Guj. Clusterbean, Guj. Clusterbean-1
 Greengram: Guj. mungbean, Guj. Mung-4
 Sorghum: GSF-4
 Mothbean: Guj.1
 Karingado: Guj. Karingado-1

- Delayed sowing (15th July to early August)
 Crops: Varieties
 Castor: -GCH-4
 Sorghum: -GSF-4
 Cluster bean: Guj. Clusterbean-1
 Pearlmillet: GHB-577, Pusa-23

- Very delayed sowing (mid August)
 Crop: Varieties
 Castor: GCH-4

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gujarat</td>
<td>Rajkot (North Kathiawmad)</td>
<td>Low run off and High yield gap</td>
</tr>
</tbody>
</table>

Agro-geographic setting

- Climate: Hot arid, Hot dry semi arid
- Soils: Vertic soils –80%; Vertisols – 20%
 Deep loamy saline and alkaline soils
 Deep loamy grey brown and alluvium - derived soils,
 Shallow and medium loamy to clayey black soils, Deep black soils
- Annual rainfall (mm): 674
- Potential evapotranspiration (mm): 2144
- Length of growing period (LGP) / moisture availability period (days): 60-120

Soil and water conservation

- Shallow ploughing before sowing and ridging and furrowing 25 days after sowing.
- Increasing soil infiltration capacity and reducing soil crusting problem
- Two to four interculturings along with deep ploughing in groundnut
Crop management

Summer-GHB-558, GHB-526

- **Seed rate**: 3.75 kg/ha
- **Planting pattern**: 60 X 15 cm
- **Nutrient management**
 - 80 kg N and 40 kg P$_2$O$_5$ / ha
 - Nitrogen in two splits (25% as basal + 75% at tillering) or Nitrogen in three splits i.e., 25% basal + 50% tillering + 25% flag leaf stage
 - Apply 80 kg N and 40 kg P$_2$O$_5$ / ha to the base crop of pearl millet in pearl millet + pigeonpea intercropping.

Suitable cropping systems

- GHB 558, GHB 577 should be grown in paired (40 cm apart with a spacing of 40 x 15 cm) in between two rows of green gram/ cowpea/sesame
- Pearl millet + greengram, pearl millet + cowpea, pearl millet + sesame
- BJ-104 – should be grown in paired rows (40 cm apart with a spacing of 40 x 15 cm) in between two rows of pigeonpea (UPAS – 120) at a spacing of 120 x 45 cm
- Pearl millet + Pigeonpea (2:1/ 4:1)
- Pigeonpea (UPAS – 120 Hy-2) was used as mixed crop with pearl millet (BJ-104) @ 38 kg N and 19 kg P$_2$O$_5$ /ha. Seed rates for Pigeonpea and Pearl millet are 20 and 3.75 kg/ha respectively.
- Pearl millet + kidney bean

Farm Implements / tools

- Two bowl seed cum ferti drill

Alternate Farming Systems

- **Fodder/ green biomass**: *Dichrostachys cineraria*, *Albizzia lebbeck*, *Leucaena leucocephala*, *Pongamia pinnata*
- On slopy fallow lands with shallow soils – *Dicanthium annulatum*; 16 rows of groundnut (GG-2) in alleys of perennial pigeonpea (ICPL-185); 16 rows of groundnut (GG-2) in alleys of subabul (Hawai gaint)
- **Fruit**: Custard apple Mango, Pomegranate, Phalsa, Fig, Jamun, Tamarind
- **Medicinal/ Aromatic Plants**: *Plantago ovata*, *Cassia angustifolia*, *Liquorice*.
- **Vegetables**: Cowpea, Cluster bean, Brinjal, Okra, Long melon, Drumstick.
- **Animal Component**: Female / male cattle; female buffaloes, sheep, goat
Contingent planning

- **Delay in monsoon by**

 15th July to 31st July

 Grow erect groundnut (GG-2, GG-5, GG-7), Sesame (G-Til-1, G-Til-2), Castor (GAUCH-1), Hybrid pearlmillet (GHB 577, GHB 558, Pusa 23), Greengram (K-851, GM-4), Blackgram (T-9, TPU-4), Pigeonpea (ICPL-87, GT-100)

 Grow erect groundnut (GG-2, GG-5, GG-7), sesame (G-Til-1, G-Til-2), castor (GAUCH-1), hybrid pearlmillet (GHB-235, GHB-316, GHB-558), greengram (K-851, GM-4), blackgram (T-9, TPU-4), pigeonpea (ICPL-87, GT-100)

 1st August to 14th August

 Grow pulses blackgram (T-9, TPU-4), forage maize / sorghum (Gundri, GFS-5), castor (GAUCH-1, GC-2) and sesame (Purva-1)

 15th August to 31st August

 Grow forage maize / sorghum (Gundri, GFS-5), sesame (Purva-1)

- **Drought spell after normal sowing**

 1-2 weeks after sowing

 Resowing of early duration varieties or alternate crops should be recommended as under, if sufficient rainfall is received. Hybrid pearlmillet (GHB-577, GHB-558), sorghum (GJ-39, J-41), sesame (G.Til-1, G-Til-2) and castor (GAUCH-1, GC-2), blackgram (T-9, TPU-4)

 Resowing of early duration varieties or alternate crops should be recommended as under, if sufficient rainfall is received. Hybrid pearlmillet (GHB-235, GHB-316, GHB-558), sorghum (GJ-39, J-41), sesame (G.Til-1, G-Til-2) and castor (GAUCH-1, GC-2), blackgram (T-9, TPU-4)

 3-5 weeks after sowing

 Agricultural operations like interculturing, weeding, hoeing and mulching may be taken up, if drought spell prolongs for two weeks or more weeks. The ratooning of sorghum ay be done and top dressing of fertilizer should be suggested if sufficient rainfall after 3-5 weeks dry spell

- **Early withdrawal of monsoon**

 - Give life saving irrigation
 - Minimize moisture losses through complete removal of weeds
 - Perform interculturing to conserve soil moisture
 - Harvest the crop according to maturity of crop duration
 - Thin the plant population

- **Satisfactory late rains during September - October**

 - Relay cropping of castor, sunflower, sesame (Purva-1) and fodder sorghum
 - Second crops like mustard and chickpea could be taken
 - Ratooning of sorghum
HARYANA

In Haryana there is one district viz. Gurgaon under low runoff and medium yield gap region. The trends in area, production and productivity of pearl millet in Haryana (1980 - 2005) are shown in Fig. 16.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haryana</td>
<td>Gurgaon (South East Haryana)</td>
<td>Low runoff and Medium yield gap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Gurgaon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Inceptisols – 100%, Deep loamy alluvium - derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>474</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1649</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>90-120</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Increasing soil infiltration capacity and reducing soil crusting problem
- Inter-plot water harvesting of 1:1 cropped to uncropped land
- Dead furrows at 3.6 m interval
- Land shaping
- Pre monsoon/ summer tillage and ridge furrow configurations across the land slope to improve moisture storage.

Crop management

- **Varieties:** HHB-67, HHB-50, HHB-60, HHB-67-2
Fig. 16. Trends in Area, Production and Productivity of Pearl millet in Haryana (1980-2005)
• **Seed rate:** 5 kg/ha
• **Planting pattern:** 45 x 15 cm
• **Nutrient management:** 40 kg N + 20 kg P₂O₅/ha.

Suitable cropping systems
- Pearl millet + cluster bean
- Pearl millet + greengram
- Pearl millet + cowpea – rapeseed mustard/ Chickpea (fodder crop)
- Pearl millet + chickpea
- Pearl millet – chickpea
- Pearl millet + cowpea – rapeseed mustard/ Chickpea (fodder crop)
- Pearl millet + greengram
- Pearl millet + clusterbean

Farm Implements / tools
- Use of blade type wheel hand hoe to save time and energy for interculture operations
- Tractor – drawn ridger – seeder (3 point hitch tools)
- Bullock-drawn Ridger seeds
- Bullock-drawn interculture blade harrow
- Hand wheel hoe

Alternate Farming Systems
- **Agri-Horti system** of ber intercropped with cowpea, greengram, clusterbean and anjan grass.
- **Fodder/ green biomass:** *A.lebbeck, P.cineraria, Melia azadirachta [saline soils], D.sissoo, A.indica.*
- **Fruit:** Guava, Amla, Karonda, Phalsa, Bael, Jamun
- **Medicinal & Aromatic Plants:** *Plantago ovata, Palma rosa, Vetiveria zyzanoides, Ocimum viride, Liquorice.*
- **Vegetables:** Tomato, Chillies Okra, Cowpea, Palak, Bottle gourd
- **Animal component:** Female Buffaloes, Sheep
KARNATAKA

In Karnataka there are three districts viz. Bijapur, Raichur and Gulbarga under low runoff and high yield gap region and one district viz. Belgaum under high runoff and high yield gap region. The trends in area, production and productivity of pearlmillet in Karnataka (1980 - 2005) are shown in Fig. 17.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karnataka</td>
<td>Bijapur, Raichur and Gulbarga (North Karnataka Plateau)</td>
<td>Low runoff and High yield gap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Bijapur</th>
<th>Raichur</th>
<th>Gulbarga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot arid</td>
<td>Hot arid</td>
<td>Hot semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertisols – 50%;</td>
<td>Vertisols – 60%;</td>
<td>Vertisols – 55%;</td>
</tr>
<tr>
<td></td>
<td>Vertic soils – 50%,</td>
<td>Vertic soils – 40%,</td>
<td>Vertisols – 45%</td>
</tr>
<tr>
<td></td>
<td>Deep loamy and clayey mixed red and black soils</td>
<td>Deep loamy and clayey mixed red and black soils</td>
<td>Shallow and Medium loamy, Medium and deep clayey black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>573</td>
<td>719</td>
<td>753</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1649</td>
<td>1951</td>
<td>1915</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>60-120</td>
<td>60-120</td>
<td>120-150</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Rubbles at 0.3 m vertical interval on contour key lines
- Compartmental bunding, ridges and furrows, contour cultivation
- Planting Khus grass and subabul in paired rows at vertical interval of 0.3 m
- Bund stabilization through stylosanthes slope
- Bund planting with neem, sissoo and tamarind
Fig. 17. Trends in Area, Production and Productivity of Pearl millet in Karnataka (1980-2005)
• A farm pond of 150 m³ capacity for every one hectare catchment area to harvest excess runoff in medium to deep black soils
• In-situ moisture conservation practices like compartmental bunding, ridges and furrows contour cultivation and fall ploughing helped to conserve more moisture in deep black soils.

Crop management
• Varieties: ICTP-8203, ICMV-221, GHB-558, ICMH-356, MLBH-267
• Seed rate: 4 kg/ha
• Planting pattern: 60 x 15 cm
• Nutrient management:
 • Hybrids - 40 kg N + 40 kg P₂O₅ + 40 K₂O /ha.
 • Varieties – 50 kg N + 25 kg P₂O₅ /ha.

Some other important practices
• Shallow soils – sowing up to 15 th July.
• Medium black soils – sowing in June

Suitable cropping systems
• Hybrid Pearlmillet + sunflower / greengram (3:1)
• Hybrid Pearlmillet + pigeonpea (2:1)
• Pearlmillet + bunch groundnut (2:4)
• Hybrid Pearlmillet + pigeonpea (2:1)
• Pearlmillet + bunch groundnut (2:4)
• Hybrid Pearlmillet + castor (3:1)

Farm Implements / tools
• Seed cum fertilizer drill
• Bed former
• Bullock drawn two wheeled multipurpose carrier

Alternate Farming Systems
• Fodder/ green biomass: D.sissoo, Glyricidia, A.lebbeck, H.binata, Cassia siamea, Azadirachta indica
• Fruit: Mango, Pomegranate, Sapota, Ber, Jamun and Tamarind.
• Medicinal/ Aromatic Plants: Cassia angustifolia, Catharanthus roseus, Palma rosa, Vetiveria zyzanoides, Rose, Geranium
• Vegetables: Onion, Brinjal, chillies, Cowpea, Cucumber, Cluster bean, Drumstick.
• Animal Component: Female Cattle, Male Cattle, Female Buffaloes, Goat, Sheep and Poultry
Contingent planning

• Normal onset of monsoon favorable for kharif crops:
 • Take up sowing of the following crops in June in light soils. Groundnut (erect and spreading), pearlmillet, pigeonpea, kharif sorghum, setaria, hybrid sorghum and other crop mixtures like kharif sorghum + pigeonpea (2:1), groundnut + pigeonpea (4:2), setaria + pigeonpea (2:1) and pearlmillet + pigeonpea (2:1). Similarly, pulse crops in light and retentive soils may be taken up.
 • In rabi areas, i.e., medium deep black soils, sow greengram, blackgram, cucumber as a first crop to be followed by rabi sorghum / sunflower/chickpea/safflower/wheat.
 • When the land is kept fallow (deep black soils) for rabi crops, have compartmental bunds having 1 per cent slope, scooping where the land slope is 1 to 2 per cent, ridges and furrows or tied ridges for better soil and moisture conservation. Take up harrowings after each rain, which helps, in controlling weeds and conserving soil moisture.
 • Sow sunhemp as green manuring crop in medium to deep black soils prior to rabi crops.

• Normal onset of monsoon but dry spells soon after germination;
 • Give protective irrigation for the crops sown wherever possible.
 • Ratoon pearlmillet, sorghum for rejuvenation after rains.
 • For crops like groundnut, take up urea spray (2% solution) immediately after rains for quick revival.
 • When the sown crops completely wither, plant setaria, dolichos, horsegram, matki, cowpea and sunflower soon after revival of rains.

• No normal rains in June but onset of rains in July:
 • Sow groundnut (spreading), hybrid pearlmillet, sunflower and setaria in kharif areas.
 • Sow pure pigeonpea/cowpea/horsegram in light soils.
 • In rabi areas don’t sow greengram since it will delay rabi sowing.
 • Have repeated harrowings to remove weeds in rabi areas.

• Normal rains in July/August:
 • Complete sowing dryland cotton before the middle of August. Grow Herbaceum cottons in place of Hirsutams. Early sowing of cotton is advantageous.
 • Sunflower, pigeonpea, and setaria should be sown in light soils and pigeonpea in medium to deep black soils.
 • In light textured soils in Hadagali, Koppal, Muddebihal, Raibag, and Athani castor may be sown. Plant castor on contour bunds also. In medium to deep black soils also take up castor sowing.
 • Relay cotton in groundnut in medium black soils.

• Normal rains in September:
 • Complete sowing of rabi sorghum by middle of September in medium black soils of northern taluks of Bijapur district. In the remaining taluks viz., Bagalkot, Hungund, and Mudhol, complete rabi sorghum sowing by first week of October. Early sowing of rabi sorghum in other districts is preferred. Maximum yields of rabi sorghum are obtained by sowing in September only.
 • Sow sunflower before 10th of September.
All India Coordinated Research Project for Dryland Agriculture (AICRPDA)

- Sow safflower as a sole crop before the end of September. Early sowing is more beneficial.
- Complete sowing of Bhagya/Laxmi cotton before 15th September.
- If normal rains are not received during September take up dry seeding of sunflower, Rabi sorghum, Chickpea with 1 ½ times the normal seed rate relatively at depth without applying chemical fertilizers. Fertilizers may be applied at appropriate growth stage having optimum moisture condition.

Sowing in October:
- Continue the sowing rabi sorghum till October 15th with 50 per cent recommended level of fertilizer.
- Follow mixed cropping of rabi sorghum + chickpea in 2:1 row proportion.
- Sow rabi sorghum and chickpea as mixed crops (random mixing).
- Increase the area under safflower.
- Sow chickpea and safflower in 4:2 or 3:1 row proportions for higher returns.
- Top dress rabi sorghum with 10-15 kg N/ha if adequate moisture is available in the soil.

Early stoppage of rains towards the end of season:
- Thin out the population of rabi sorghum by blading every third row or alternate row within 40 days of sowing.
- In mixed crops of rabi sorghum and safflower, uproot rabi sorghum component.
- Close soil cracks by repeated interculturing.
- Provide supplemental irrigation through farm ponds or other sources. By providing one or two supplemental irrigation(s) to rabi sorghum, safflower and chickpea, yields could be increased by 50 to 60 per cent.
- Use surface mulches of mixed trash or farm waste wherever possible where farm waste is not available, use a blade to form a thin layer of soil mulch to avoid cracks.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karnataka</td>
<td>Belgaum (Western Karnataka Plateau)</td>
<td>High runoff and High yield gap</td>
</tr>
</tbody>
</table>

Agro-geographic setting

<table>
<thead>
<tr>
<th>Climate</th>
<th>Belgaum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td></td>
</tr>
<tr>
<td>Vertic soils – 70%; Vertisols – 30%</td>
<td></td>
</tr>
<tr>
<td>Shallow and medium loamy and clayey black soils, Deep clayey black soils</td>
<td></td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1551</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1482</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>150-180</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Rubbles at 0.3 m vertical interval on contour key lines
- Compartmental bunding, ridges and furrows, contour cultivation
• Planting Khus grass and subabul in paired rows at vertical interval of 0.3 m
• Bund stabilization through stylosanthes slope
• Bund planting with neem, sissoo and tamarind
• A farm pond of 150 m³ capacity for every one hectare catchment area to harvest excess runoff in medium to deep black soils
• In-situ moisture conservation practices like compartmental bunding, ridges and furrows contour cultivation and fall ploughing helped to conserve more moisture in deep black soils.

Crop management
• Varieties: BJ - 104
• Seed rate: 5 kg/ha
• Planting pattern: 60 cm rows
• Nutrient management
 • Hybrids - 40 kg N + 40 kg P₂O₅ + 40 K₂O/ha.
 • Varieties – 50 kg N + 25 kg P₂O₅ /ha.

Some other important practices
• Shallow soils – sowing up to 15th July
• Medium black soils – sowing in June

Suitable cropping systems
• Hybrid Pearlmillet + pigeonpea (2:1)
• Pearlmillet + bunch groundnut (2:4)
• Hybrid pearlmillet + castor (3:1)

Farm Implements / tools
• Seed cum fertilizer drill
• Bed former
• Bullock drawn two wheeled multipurpose carrier

Alternate Farming Systems
• Agave (Agave sisolana with 10,000 plants /ha) intercropped with subabul. Cutting of agave leaves once in a year for fibre extraction with retaining top ten leaves
• Silviculture
 • Shallow black soils: Casuarina, Dalbergia sissoo, Hardwikia binata, Acacia nitotica, Prosopis cineraria
 • Marginal land: Dalbergia sissoo, neem, Acacia nitotica, Subabul
 • Aley cropping: Subabul / casuarina + Kharif crops
 • Agro horti system: Ber (umran) + curry leaf
 • Vegetable – curry leaf
• Ber (umran) – safflower + chickpea
• Ber / custard apple/ pomegranate / amla + kharif (spreading) crops

Horticulture: Mango plants in leveled portion of zing conservation terrace

Fodder/ green biomass: *D.sissoo, Glyricidia, A.lebbeck, H.binata, Cassia siamea, Azadirachta indica*

Fruit: Mango, Pomegranate, Sapota, Ber, Jamun and Tamarind.

Medicinal/ Aromatic Plants: *Cassia angustifolia, Catharanthus roseus, Palma rosa, Vetiveria zyzanoides, Rose, Geranium*

Vegetables: Onion, Brinjal, chillies, Cowpea, Cucumber, Cluster bean, Drumstick.

Animal Component: Female and male Cattle, Female Buffaloes, Goat, Sheep, Poultry

Contingent planning

Normal onset of monsoon favorable for kharif crops:

• Take up sowing of the following crops in June in light soils. Groundnut (erect and spreading), pearl millet, pigeonpea, *kharif* sorghum, setaria, hybrid sorghum and other crop mixtures like *kharif* sorghum + pigeonpea (2:1), groundnut + pigeonpea (4:2), setaria + pigeonpea (2:1) and pearl millet + pigeonpea (2:1). Similarly, pulse crops in light and retentive soils may be taken up.

• In *rabi* areas, i.e., medium deep black soils, sow greengram, blackgram, cucumber as a first crop to be followed by *rabi* sorghum / sunflower/chickpea/safflower/wheat.

• When the land is kept fallow (deep black soils) for *rabi* crops, have compartmental bunds having 1 per cent slope, scooping where the land slope is 1 to 2 per cent, ridges and furrows or tied ridges for better soil and moisture conservation. Take up harrowing after each rain, which helps, in controlling weeds and conserving soil moisture.

• Sow sunhemp as green manuring crop in medium to deep black soils prior to *rabi* crops.

Normal onset of monsoon but dry spells soon after germination;

• Give protective irrigation for the crops sown wherever possible.

• Ratoon pearl millet, sorghum for rejuvenation after rains.

• For crops like groundnut, take up urea spray (2% solution) immediately after rains for quick revival.

• When the sown crops completely wither, plant setaria, dolichos, horse gram, matki, cowpea and sunflower soon after revival of rains.

No normal rains in June but onset of rains in July:

• Sow groundnut (spreading), hybrid pearl millet, sunflower and setaria in *kharif* areas.

• Sow pure pigeonpea/cowpea/horsegram in light soils.

• In *rabi* areas don’t sow greengram since it will delay *rabi* sowing.

• Have repeated harrowings to remove weeds in *rabi* areas.

Normal rains in July/August:

• Complete sowing dryland cotton before the middle of August. Grow *Herbaceum* cottons in place of *Hirsutams*. Early sowing of cotton is advantageous.

• Sunflower, pigeonpea, and setaria should be sown in light soils and pigeonpea in medium to deep black
soils.

- In light textured soils in Hadagali, Koppal, Muddebihal, Raibag, and Athani castor may be sown. Plant castor on contour bunds also. In medium to deep black soils also take up castor sowing.
- Relay cotton in groundnut in medium black soils.

Normal rains in September:
- Complete sowing of *rabi* sorghum by middle of September in medium black soils of northern taluks of Bijapur district. In the remaining taluks viz., Bagalkot, Hungund, and Mudhol, complete *rabi* sorghum sowing by first week of October. Early sowing of *rabi* sorghum in other districts is preferred. Maximum yields of *rabi* sorghum are obtained by sowing in September only.
- Sow sunflower before 10th of September.
- Sow safflower as a sole crop before the end of September. Early sowing is more beneficial.
- Complete sowing of Bhagya/Laxmi cotton before 15th September.
- If normal rains are not received during September take up dry seeding of sunflower, *Rabi* sorghum, Chickpea with 1 ½ times the normal seed rate relatively at depth without applying chemical fertilizers. Fertilizers may be applied at appropriate growth stage having optimum moisture condition.

Sowing in October:
- Continue the sowing *rabi* sorghum till October 15th with 50 per cent recommended level of fertilizer.
- Follow mixed cropping of *rabi* sorghum + chickpea in 2:1 row proportion.
- Sow *rabi* sorghum and chickpea as mixed crops (random mixing).
- Increase the area under safflower.
- Sow chickpea and safflower in 4:2 or 3:1 row proportions for higher returns.
- Top dress *rabi* sorghum with 10-15 kg N/ha if adequate moisture is available in the soil.

Early stoppage of rains towards the end of season:
- Thin out the population of *rabi* sorghum by blading every third row or alternate row within 40 days of sowing.
- In mixed crops of *rabi* sorghum and safflower, uproot *rabi* sorghum component.
- Close soil cracks by repeated interculturing.
- Provide supplemental irrigation through farm ponds or other sources. By providing one or two supplemental irrigation(s) to *rabi* sorghum, safflower and chickpea, yields could be increased by 50 to 60 per cent.
- Use surface mulches of mixed trash or farm waste wherever possible where farm waste is not available, use a blade to form a thin layer of soil mulch to avoid cracks.
MAHARASHTRA

In Maharashtra there are two districts viz. Dhule and Jalna under low runoff and medium yield gap region, seven districts viz. Ahamednagar, Beed, Nasik, Pune, Aurangabad, Sangli and Jalgaon under low runoff and high yield gap region and one district viz. Satara under high runoff and high yield gap region.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maharshtra</td>
<td>Dhule and Jalna (Western Maharshtra Plateau)</td>
<td>Low runoff and Medium yield gap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Dhule</th>
<th>Jalna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot semi arid</td>
<td>Hot semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils –65%; Vertisol – 35%; Shallow and Medium loamy; Medium and deep clayey black soils</td>
<td>Vertic soils – 75%; Vertisol –25%; Shallow and Medium loamy, Medium and deep clayey black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>738</td>
<td>1472</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1713</td>
<td>1472</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120-150</td>
<td>120-150</td>
</tr>
</tbody>
</table>

Soil and water conservation
- Compartamental bunding
- Ridges and furrows prior to sowing
- Marvel –8 grass on bunds for protection of bunds
- Contour live bunds of Marvel-8 or Leucaena
- Leucaena lopping mulch at 3.5 t/ha

Crop management
- Hybrids: Shradha, RHRBH -8603
- Seed rate: Hybrids - 3.75 – 4 kg/ha
- Varieties: 2.5 kg/ha
- Planting pattern: 45 X 15 cm
- Nutrient management: 50 kg N + 25 kg P_2O_5 /ha.

Some other important practices
- Sowing up to first fortnight of July
- Seed treatment with 10% brine solution for ergot affected seed
- Seed treatment with Thiram or Captan 3 g / kg of seed
- Protective irrigation, if available, at tillering and at flowering
• Sowing up to first fortnight of July
• Seed treatment with 20% brine solution for ergot affected seed
• Seed treatment with Thiram or Captan 3 g / kg of seed
• Protective irrigation, if available, at tillering and at flowering

Suitable cropping systems
• Pearlmillet + kidney bean/ horse gram (2:1) for shallow soils
• Pearlmillet + pigeonpea (2:1) – for medium deep soils
• Pearlmillet + kidney bean/ horse gram (2:1) for shallow soils
• Pearlmillet + pigeonpea (2:1) – for medium deep soils

Farm Implements / tools

<table>
<thead>
<tr>
<th>Tool/Implement</th>
<th>Cost</th>
<th>Operation carried</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Tractor multicrop planter</td>
<td>Rs.22800/-</td>
<td>Sowing of rabi sorghum was done on farmer’s field. Minor modifications made in the original design for adoption of the machine in dryland region. Awareness was created amongst the farmers by conducting demonstrations on farmer’s field. The farmers were satisfied with operation of this machine.</td>
</tr>
<tr>
<td>2) Bullock drawn Jyoti Planter.</td>
<td>Rs.7500/-</td>
<td>The field trials were conducted and the machine is recommended for sowing the crops of dryland region.</td>
</tr>
<tr>
<td>3) Weeders developed by Maharashtra Agro Industries Development Corporation Ltd. (MAIDC)</td>
<td>Rs.410/-</td>
<td>These weeders were tested on farmer’s field and identified for weeding and interculturing in row crops.</td>
</tr>
<tr>
<td>4) Tractor drawn a) Single bottom reversible plough.</td>
<td>Rs.18500/-</td>
<td>Tested on farmers’ field for ploughing and identified for ploughing operations in dryland region as the field operation was effective and economical.</td>
</tr>
<tr>
<td>5) Bund former</td>
<td>Rs.1050/-</td>
<td>Bund formers were tested and found suitable for compartmental bunding.</td>
</tr>
<tr>
<td>6) Baliram plough</td>
<td>Rs.2500/-</td>
<td>Identified for moisture conservation practices like ridges and furrows and compartmental bunding.</td>
</tr>
<tr>
<td>7) Kopergaon bullock drawn two-bowl seed drill.</td>
<td>Rs.9000/-</td>
<td>The local made seed drill named “Kopergaon seed drill” is operated on the field for sowing crops like sorghum, pearlmillet, pigeonpea etc. and identified for sowing of the crops of dryland region.</td>
</tr>
</tbody>
</table>

Alternate Farming Systems
• Silvipasture: Leucaena + Marvel –8
• Alley cropping: Ber (20 m alleys) + pearlmillet + pigeonpea for shallow soils
• Fodder: Maize (African Tall) Oats (Kent), Stylo hamata
• **Fodder/ green biomass**: Dalbergia sissoo, Albizzia lebbeck, Anogeissus latifolia, Sesbania, Stylo Marvel – 8 grass
• **Fruit**: Ber, Custard apple, Pomegranate, amla + kharif spreading crops
• **Medicinal/ Aromatic Plants**: Catharanthus roseus, Palma rosa, Vetiveria zyzanoides, Rose, Geranium
• **Vegetables**: Onion, Tomato, Okra, Cowpea, Cluster bean, Drumstick
• **Animal Component**:
 - **Cow breeds**: Gir, Jersey
 - **Poultry**: White Leghorn
 - Rams
 - Male/ female cattle, female buffaloes, sheep, goat

Alternate land use system

- Lands < 22.5 cm depth of soil should be cultivated with Agroforestry and dryland horticulture including Ber, Custard apple, Aonla, Wood apple, Jambhul etc.
- On light soils Ber cultivation at 20x5 m spatial arrangement associated with pearlmillet + pigeonpea (2:1) intercropping within two rows of ber plantation was recommended.
- Silvipastoral system of Subabul + Marvel-8 with cutting of the alternate trees at 7th year onwards for fuel is also recommended.
- For productivity increment in scarcity area the pearlmillet + pigeonpea (2:1) intercropping or Ber (5x5 m) + mothbean (8 lines) is advocated.

Contingent planning

Mid season corrections during kharif with soil having depth upto 45 cm for the scarcity zone.

<table>
<thead>
<tr>
<th>2nd Fortnight of June</th>
<th>All kharif crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Fortnight of July</td>
<td>Pearlmillet, Setaria, Groundnut, Castor, Pigeonpea, Horsegram, Intercropping of Pearlmillet + Pigeonpea (2:1), Cluster bean + Pigeonpea (2:1), Cluster bean + Castor (2:1), Sunflower + Pigeonpea (2:1)</td>
</tr>
<tr>
<td>2nd Fortnight of July</td>
<td>Sunflower, Pigeonpea, Horsegram, Setaria, Castor, Pearlmillet (ergot resistant), Intercropping of Sunflower + Pigeonpea (2:1)</td>
</tr>
<tr>
<td>1st Fortnight of August</td>
<td>Sunflower, Pigeonpea, Castor, Horsegram, Sunflower + Pigeonpea (2:1)</td>
</tr>
<tr>
<td>2nd Fortnight of August</td>
<td>Sunflower, Pigeonpea, Castor, Sunflower + Pigeonpea (2:1)</td>
</tr>
<tr>
<td>1st Fortnight of September</td>
<td>Sorghum for fodder</td>
</tr>
<tr>
<td>2nd Fortnight of September</td>
<td>Rabi Sorghum, Safflower, Sunflower</td>
</tr>
<tr>
<td>1st Fortnight of October</td>
<td>Rabi Sorghum, Safflower, Chickpea, Sunflower</td>
</tr>
<tr>
<td>2nd Fortnight of October</td>
<td>Chickpea, Sunflower, Rabi Sorghum.</td>
</tr>
<tr>
<td>1st Fortnight of November</td>
<td>Chickpea, Sunflower.</td>
</tr>
<tr>
<td>State</td>
<td>District</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>Ahmednagar, Beed and Nasik (Western Maharashtra Plateau) Pune (North Sahayadris) Aurangabad (Central Maharashtra Plateau) Sangli (South Western Maharashtra) Jalgaon (Eastern Maharashtra)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Ahmednagar</th>
<th>Beed</th>
<th>Nasik</th>
<th>Pune</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot dry semi arid</td>
<td>Hot dry semi arid</td>
<td>Hot semi arid</td>
<td>Hot semi arid</td>
</tr>
<tr>
<td></td>
<td>Vertic soils – 60%; vertisols – 40%; Shallow and medium loamy black soils, Deep clayey black soils</td>
<td>Vertic soils –100% Shallow and medium loamy black soils, Deep clayey black soil</td>
<td>Vertic soils –85%; Vertisols – 15% Shallow and Medium loamy Medium and deep clayey black soils</td>
<td>Vertic soils- 65%; Vertisols – 35% Shallow and Medium loamy Medium and deep clayey black soils, Shallow and medium loamy and clayey black soils, Deep clayey black soils Medium to deep loamy to clayey mixed red and black soils</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 60%; vertisols – 40%; Shallow and medium loamy black soils, Deep clayey black soils</td>
<td>Vertic soils –100% Shallow and medium loamy black soils, Deep clayey black soil</td>
<td>Vertic soils –85%; Vertisols – 15% Shallow and Medium loamy Medium and deep clayey black soils</td>
<td>Vertic soils- 65%; Vertisols – 35% Shallow and Medium loamy Medium and deep clayey black soils, Shallow and medium loamy and clayey black soils, Deep clayey black soils Medium to deep loamy to clayey mixed red and black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>676</td>
<td>685</td>
<td>591</td>
<td>715</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1605</td>
<td>1606</td>
<td>1659</td>
<td>1476</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>90-120</td>
<td>90-120</td>
<td>120-150</td>
<td>90-240</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Aurangabad</th>
<th>Sangli</th>
<th>Jalgaon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot semi arid</td>
<td>Hot semi arid</td>
<td>Hot semi arid</td>
</tr>
<tr>
<td></td>
<td>Vertic soils – 80%; Vertisols – 20% Shallow and Medium loamy Medium and deep clayey black soils</td>
<td>Vertic soils –75%; Vertisols – 25% Shallow and Medium loamy Medium and deep clayey black soils</td>
<td>Vertic soils–65% Vertisols – 35% Shallow and Medium loamy Medium and deep clayey black soils</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 80%; Vertisols – 20% Shallow and Medium loamy Medium and deep clayey black soils</td>
<td>Vertic soils –75%; Vertisols – 25% Shallow and Medium loamy Medium and deep clayey black soils</td>
<td>Vertic soils–65% Vertisols – 35% Shallow and Medium loamy Medium and deep clayey black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>786</td>
<td>571</td>
<td>841</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1774</td>
<td>1620</td>
<td>1912</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>90-240</td>
<td>90-180</td>
<td>120-150</td>
</tr>
</tbody>
</table>
 Soil and water conservation
- Compartmental bunding
- Ridges and furrows prior to sowing
- Marvel –8 grass on bunds for protection of bunds
- Contour live bunds of Marvel-8 or Leucaena
- Leucaena lopping mulch at 3.5 t/ha

 Crop management
- Varieties: ICTP-8203, GK-1004, PAC-903, Nandi-35, Saburi, GHB-558, Sharadha
 Hybrids: Shradha, RHRBH -8603
- Seed rate: Hybrids - 3.75 – 4kg/ha
 Varieties: 3 kg /ha
- Planting pattern: 45 X 15 cm
- Nutrient management : 50 kg N + 25 kg P₂O₅ /ha.

 Suitable cropping systems
- Pearlmillet + kidney bean/ horse gram (2:1) for shallow soils
- Pearlmillet + pigeonpea (2:1) for medium deep soils
- Pearlmillet + kidney bean/ horse gram (2:1) for shallow soils
- Pearlmillet + pigeonpea (2:1) for medium deep soils

 Farm Implements / tools

<table>
<thead>
<tr>
<th>Tool/Implement</th>
<th>Cost</th>
<th>Operation carried</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Tractor multi crop planter</td>
<td>Rs.22800/-</td>
<td>Sowing of rabi sorghum was done on farmer’s field. Minor modifications made in the original design for adoption of the machine in dryland region. Awareness was created amongst the farmers by conducting demonstrations on farmer's field. The farmers were satisfied with operation of this machine.</td>
</tr>
<tr>
<td>2) Bullock drawn Jyoti Planter.</td>
<td>Rs.7500/-</td>
<td>The field trials were conducted and the machine is recommended for sowing the crops of dryland region.</td>
</tr>
<tr>
<td>3) Weeders developed by Maharashtra Agro Industries Development Corporation Ltd. (MAIDC)</td>
<td>Rs.410/-</td>
<td>These weeders were tested on farmer's field and identified for weeding and interculturing in row crops.</td>
</tr>
<tr>
<td>4) Tractor drawn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Single bottom reversible plough.</td>
<td>Rs.18500/-</td>
<td>Tested on farmers’ field for ploughing and identified for ploughing operations in dryland region as the field operation was effective and economical.</td>
</tr>
<tr>
<td>b) Double bottom reversible plough.</td>
<td>Rs.23600/-</td>
<td></td>
</tr>
<tr>
<td>5) Bund former</td>
<td>Rs.1050/-</td>
<td>Bund forms were tested and found suitable for compartmental bunding.</td>
</tr>
<tr>
<td>6) Baliram plough</td>
<td>Rs.2500/-</td>
<td>Identified for moisture conservation practices like ridges and furrows and compartmental bunding.</td>
</tr>
<tr>
<td>7) Kopergaon bullock drawn</td>
<td>Rs.9000/-</td>
<td>The local made seed drill named “Kopergaon seed drill” is operated on the field for sowing crops like sorghum, pearlmillet, pigeonpea etc. and identified for sowing of the crops of dryland region.</td>
</tr>
</tbody>
</table>
Alternate Farming Systems

• **Silvipasture:** *Leucaena* + Marvel – 8

• **Alley cropping:** Ber (20 m alleys) + Pearl millet + pigeon pea for shallow soils

• **Fodder:** Maize (African Tall), Oats (Kent), *Stylosanthes*

• **Fodder/ green biomass:** *Dalbergia sissoo, Albizzia lebbeck, Anogeissus latfolia, Sesbania, Stylo Marvel – 8 grass*

• **Fruit:** Ber, Custard apple, Pomegranate, amla+ kharif spreading crops

• **Medicinal/ Aromatic Plants:** *Catharanthus roseus, Palma rosa, Vetiveria zyzanoides, Rose, Geranium*

• **Vegetables:** Onion, Tomato, Okra, Cow pea, Cluster bean, Drumstick

• **Animal component:**
 - Cow breeds: Gir, Jersey
 - Poultry: White Leghorn
 - Rams
 - Male/ female cattle, female buffaloes, sheep, goat

Alternate land use system

• Lands < 22.5 cm depth of soil should be cultivated with Agroforestry and dryland horticulture including Ber, Custard apple, Aonla, Wood apple, Jambhul etc.

• On light soils Ber cultivation at 20x5 m spatial arrangement associated with pearl millet + pigeon pea (2:1) intercropping within two rows of ber plantation was recommended.

• Silvipastoral system of subabul + Marvel-8 with cutting of the alternate trees at 7th year onwards for fuel is also recommended.

• For productivity increment in scarcity area the pearl millet + pigeon pea (2:1) intercropping or ber (5x5 m) + moth bean (8 lines) is advocated.

Contingent Planning

Mid season corrections during *kharif* with soil having depth upto 45 cm for the scarcity zone.

<table>
<thead>
<tr>
<th>2nd Fortnight of June</th>
<th>1st Fortnight of July</th>
<th>2nd Fortnight of July</th>
<th>1st Fortnight of August</th>
<th>2nd Fortnight of August</th>
<th>1st Fortnight of September</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearl millet, Setaria, Groundnut, Castor, Pigeon pea, Horsegram, Intercropping of Pearl millet + Pigeon pea (2:1), Cluster bean + Pigeon pea (2:1), Cluster bean + Castor (2:1), Sunflower + Pigeon pea (2:1)</td>
<td>Pearl millet, Setaria, Groundnut, Castor, Pigeon pea, Horsegram, Intercropping of Pearl millet + Pigeon pea (2:1), Cluster bean + Pigeon pea (2:1), Cluster bean + Castor (2:1), Sunflower + Pigeon pea (2:1)</td>
<td>Sunflower, Pigeon pea, Horse gram, Setaria, Castor, Pearl millet (ergot resistant), Intercropping of Sunflower + Pigeon pea (2:1)</td>
<td>Sunflower, Pigeon pea, Castor, Horse gram, Sunflower + Pigeon pea (2:1)</td>
<td>Sunflower, Pigeon pea, Castor, Sunflower + Pigeon pea (2:1)</td>
<td>Sorghum for fodder</td>
</tr>
</tbody>
</table>

3 Pearlmillet vap.pmd 5/28/2008, 12:37 PM
2nd Fortnight of September Rabi Sorghum, Safflower, Sunflower
1st Fortnight of October Rabi Sorghum, Safflower, Chickpea, Sunflower
2nd Fortnight of October Chickpea, Sunflower, Rabi Sorghum.
1st Fortnight of November Chickpea, Sunflower.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maharashtra</td>
<td>Satara (North Sahayadris)</td>
<td>High runoff and High yield gap</td>
</tr>
</tbody>
</table>

Agro-geographic setting
- Satara

Climate
- Hot semi arid
- Hot dry sub humid

Soils
- Shallow and Medium loamy, Medium and deep clayey black soils
- Shallow and medium loamy and clayey black soils, Deep clayey black soils

Annual rainfall (mm) 1119

Potential evapotranspiration (mm) 1618

Length of growing period (LGP) / moisture availability period (days) 90-180

Soil and water conservation
- Compartmental bunding
- Ridges and furrows prior to sowing
- Marvel –8 grass on bunds for protection of bunds
- Contour live bunds of Marvel-8 or *Leucaena*
- *Leucaena* lopping mulch at 3.5 t/ha

Crop management
- **Varieties:** ICTP-8203, Saburi GHB-558, Sharadha, Raj-171, ICMV-155
- **Hybrids:** Shradha, RHRBH - 8603
- **Seed rate:** Hybrids - 3.75 – 4kg/ha
 - Varieties: 3 kg /ha
- **Planting pattern:** 45 X 15 cm
- **Nutrient management:** 50 kg N + 25 kg P₂O₅ /ha.

Suitable cropping systems
- Pearlmillet + kidney bean/ horse gram (2:1) for shallow soils
- Pearlmillet + pigeonpea (2:1) – for medium deep soils
- Pearlmillet + kidney bean/ horse gram (2:1) for shallow soils
- Pearlmillet + pigeonpea (2:1) – for medium deep soils
Farm Implements / tools

<table>
<thead>
<tr>
<th>Tool/Implement</th>
<th>Cost</th>
<th>Operation carried</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Tractor multicrop planter</td>
<td>Rs.22800/-</td>
<td>Sowing of rabi sorghum was done on farmer’s field. Minor modifications made in the original design for adoption of the machine in dryland region. Awareness was created amongst the farmers by conducting demonstrations on farmer’s field. The farmers were satisfied with operation of this machine.</td>
</tr>
<tr>
<td>2) Bullock drawn Jyoti Planter.</td>
<td>Rs.7500/-</td>
<td>The field trials were conducted and the machine is recommended for sowing the crops of dryland region.</td>
</tr>
<tr>
<td>3) Weeders developed by Maharashtra Agro Industries Development Corporation Ltd. (MAIDC)</td>
<td>Rs.410/-</td>
<td>These weeders were tested on farmer’s field and identified for weeding and interculturing in row crops.</td>
</tr>
<tr>
<td>4) Tractor drawn a) Single bottom reversible plough. b) Double bottom reversible plough.</td>
<td>Rs.18500/- Rs.23600/-</td>
<td>Tested on farmers’ field for ploughing and identified for ploughing operations in dryland region as the field operation was effective and economical.</td>
</tr>
<tr>
<td>5) Bund former</td>
<td>Rs.1050/-</td>
<td>Bund formers were tested and found suitable for compartmental bunding.</td>
</tr>
<tr>
<td>6) Baliram plough</td>
<td>Rs.2500/-</td>
<td>Identified for moisture conservation practices like ridges and furrows and compartmental bunding.</td>
</tr>
<tr>
<td>7) Kopergaon bullock drawn two bowl seed drill.</td>
<td>Rs.9000/-</td>
<td>The local made seed drill named “Kopergaon seed drill” is operated on the field for sowing crops like sorghum, pearl millet, pigeonpea etc. and identified for sowing of the crops of dryland region.</td>
</tr>
</tbody>
</table>

Alternate Farming Systems

- **Silvipasture:** *Leucaena + Marvel – 8*
- **Alley cropping:** Ber (20 m alleys) + pearl millet + pigeonpea for shallow soils
- **Fodder:** Maize (African Tall), Oats (Kent), *Stylosanthes hamata*
- **Fodder/ green biomass:** *Dalbergia sissoo, Albizia lebbeck, Anogeissus latfolia, Sesbania, Stylo Marvel – 8 grass*
- **Fruit:** Ber, Custard apple, Pomegranate, amla + *kharif* spreading crops
- **Medicinal/ Aromatic Plants:** *Catharanthus roseus, Palma rosa, Vetiveria zyzanoides, Rose, Geranium*
- **Vegetables:** Onion, Tomato, Okra, Cowpea, Cluster bean, Drumstick
- **Animal Component:**
 - **Cow breeds:** Gir, Jersey
 - **Poultry:** White Leghorn
 - **Rams**
 - **Male/ female cattle, female buffaloes, sheep, goat**
Alternate land use system

- Lands < 22.5 cm depth of soil should be cultivated with Agroforestry and dryland horticulture including Ber, Custard apple, Aonla, Wood apple, Jambhul etc.
- On light soils Ber cultivation at 20x5 m spatial arrangement associated with pearlmillet + pigeonpea (2:1) intercropping within two rows of Ber plantation was recommended.
- Silvipastoral system of Subabul + Marvel-8 with cutting of the alternate trees at 7th year onwards for fuel is also recommended.
- For productivity increment in scarcity area the pearlmillet + pigeonpea (2:1) intercropping or Ber (5x5 m) + mothbean (8 lines) is advocated.

Contingent Planning

Mid season corrections during kharif with soil having depth upto 45 cm for the scarcity zone.

<table>
<thead>
<tr>
<th>Fortnight</th>
<th>Crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd Fortnight June</td>
<td>All kharif crops</td>
</tr>
<tr>
<td>1st Fortnight July</td>
<td>Pearlmillet, Setaria, Groundnut, Castor, Pigeonpea, Horsegram, Intercropping of Pearlmillet + Pigeonpea (2:1), Cluster bean + Pigeonpea (2:1), Cluster bean + Castor (2:1), Sunflower + Pigeonpea (2:1)</td>
</tr>
<tr>
<td>2nd Fortnight July</td>
<td>Sunflower, Pigeonpea, Horsegram, Setaria, Castor, Pearlmillet (ergot resistant), Intercropping of Sunflower + Pigeonpea (2:1)</td>
</tr>
<tr>
<td>1st Fortnight August</td>
<td>Sunflower, Pigeonpea, Castor, Horsegram, Sunflower + Pigeonpea (2:1)</td>
</tr>
<tr>
<td>2nd Fortnight August</td>
<td>Sunflower, Pigeonpea, Castor, Sunflower + Pigeonpea (2:1)</td>
</tr>
<tr>
<td>1st Fortnight September</td>
<td>Sorghum for fodder</td>
</tr>
<tr>
<td>2nd Fortnight September</td>
<td>Rabi Sorghum, Safflower, Sunflower</td>
</tr>
<tr>
<td>1st Fortnight October</td>
<td>Rabi Sorghum, Safflower, Chickpea, Sunflower</td>
</tr>
<tr>
<td>2nd Fortnight October</td>
<td>Chickpea, Sunflower, Rabi Sorghum.</td>
</tr>
<tr>
<td>1st Fortnight November</td>
<td>Chickpea, Sunflower.</td>
</tr>
</tbody>
</table>
RAJASTHAN

In Rajasthan there are four districts viz. Alwar, Dholpur, Bharatpur and Sawaimadhapur under low runoff and medium yield gap region, one district viz. Jaipur under low runoff and high yield gap region. The trends in area, production and productivity of pearl millet in Rajasthan (1980 - 2005) are shown in Fig. 18.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajasthan</td>
<td>Alwar, Dholpur and Bharatpur (North Rajasthan Uplands)</td>
<td>Low runoff and Medium yield gap</td>
</tr>
<tr>
<td></td>
<td>Sawaimadhapur (Eastern Rajasthan Uplands)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Alwar</th>
<th>Dholpur</th>
<th>Bharatpur</th>
<th>Sawaimadhapur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot semi arid</td>
<td>Hot semi arid</td>
<td>Hot semi arid</td>
<td>Hot semi arid</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>725</td>
<td>722</td>
<td>722</td>
<td>753</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1595</td>
<td>150</td>
<td>1500</td>
<td>1569</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>90-120</td>
<td>90-120</td>
<td>180</td>
<td>90-120</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Compartmental bunding after seedling emergence
- Contour farming
- Graded border strips
- Sowing across the slope and ridging later
- To mitigate early season drought, one extra inter cultivation along with straw mulch @ 5t/ha is effective.
- One protective irrigation is only solution to control late season drought effect during summer.
- Deep tillage during summer and making compartmental bunding after seedlings emergence.
- Criss-cross ploughing by country plough after each effective rainfall.
- To mitigate early season drought, one extra inter cultivation along with straw mulch @5 t/ha is effective. One protective irrigation is only solution to control the adverse effect of late season drought.

Crop management

- **Varieties:** HHB 67, RHB 90, RHB 121, JIC, Proagro, Raj 171, Raj Bajra chari, MBH – 110, MBH – 163, WCC – 75
- **Seed rate:** 3.5-4kg/ha
- **Planting pattern:** 45 X 15 cm
Fig. 18. Trends in Area, Production and Productivity of Pearl millet in Rajasthan (1980-2005)
• **Nutrient management**
 - 60 kg N and 40 kg P_2O_5/ha. P as basal and N in two equal splits 25% at sowing and 75% at tiller initiation
 - 60 kg N and 40 kg P_2O_5/ha. P as basal and N in two equal splits at sowing and tiller initiation
 - 30 kg N through FYM and 30 kg N through inorganic fertilizers

Some other important practices
• Sowing in lines
• Extra inter cultivation along with mustard straw mulch @ 5 tons/ha increase pearlmillet yield in early season drought situation.
• Removal of every third row increase the pearlmillet yield in late season drought
• Transplanting of pearlmillet along with one protective irrigation is much advantageous under late seeding condition.
• Transplanting along with one protective irrigation in late seeding condition
• Mulching with wheat straw @5 t/ha
• Pearlmillet + cowpea (2:1) is grown for fodder and harvested after 45 to 50 days up to end of Hugust
• Deep tillage along with compartmental bunding + 60 kg N/HA

Suitable cropping systems
• Pearl millet + cowpea
• Pearl millet + greengram
• Pearlmillet – chickpea
• Pearlmillet + pigeonpea (2:1)
• Pearlmillet + blackgram (2:1)
• Pearlmillet + clusterbean (2:1)
Expected yield increase: 15-20%

Farm Implements / tools
• Dryland weeder is quite effective and economic in controlling the weeds in both seasons.

Alternate Farming Systems
• **Marginal lands :**
• **Silviculture: Acacia tortilis**
• LCC III : Alley cropping (Jatropha spp + Greengram)
• LCC IV : Silvipastoral system: *Prosopis cineraria* + *Cenchrus sp*
• Horti – Pastoral system: Ber + *Cenchrus setigerus*
• Fodder/green biomass: *A.indica*, *Leucaena*, *A. lebbeck*, *H. binata*, *Pongamia*, *C. siamea*, *Bauhinia*
• Fruit: Mango, gauva, Amla, Phalsa, Jamun, Caronda
• **Medicinal & Aromatic Plants:** *Papaver somniferum*, *Palma rosa*, *Cymbopogan flexuosus*, *Vetiveria zyhanoides*
Contingent planning

- **Kharif**
 - **Under normal rainfall:** Pearl millet (HHB 67, RHB 90, RHB 121, JK, Proagro, Raj 171, Raj Bajra Chari)
 - Under normal rainfall: Pearlmillet (Proagro 9402), pigeonpea (UPAS 120), greengram (K 851), Clusterbean (RGC 197)
 - As the monsoon progresses
 - **Rainfall upto end of July:**
 - Pearl millet (HHB 67, RHB 90, RHB 121, JK, Proagro, Raj 171, Raj Bajra Chari) intercropped with cluster bean and cowpea
 - **Rainfall upto third week of August**
 - Cereals and pulses: Cluster bean (RGC 197) and transplanting of pearl millet (HHB 67- 2)
 - **Rainfall upto end of July**
 - Cereals and Pulses: Pearlmillet (Proagro 9402) intercropped with pigeonpea (UPAS-120, IPCL-87) blackgram (T-9) and greengram (K-851). Pure crop of clusterbean, blackgram and greengram.
 - Oilseeds: Groundnut (Chandra) and sesame (Pratap) upto the end of third week of July
 - **Rainfall upto third week of August**
 - Cereals and pulses: Clusterbean (RGC-197) and transplanting of pearlmillet (MBH-163)
 - **Rainfall upto end of August**
 - Clusterbean as pure crop (RGC-197)
 - Castor with a seed rate of 15 kg/ha.

- **Rabi:**
 - Rapeseed mustard (Pusa Jaikisan), Barley, Ratna, Chickpea (K-850), lentil (L-9-12) and
 - Taramira (TMH-1) and safflower in the order.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajasthan</td>
<td>Jaipur (Central Rajasthan Uplands)</td>
<td>Low runoff and High yield gap</td>
</tr>
</tbody>
</table>

- **Vegetables:** Tomato, Chilly, Brinjal, Okra, Bottle gourd, Amaranthus, Cowpea.
- **Animal Component:** Female Cattle, Female Buffaloes, Goat and Poultry

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Jaipur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Inceptisols – 100%, Deep loamy alluvium - derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>647</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1745</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>90-120</td>
</tr>
</tbody>
</table>
Soil and water conservation

- More emphasis on in situ water conservation
- Increasing soil infiltration capacity and reducing soil crusting problem
- Contour furrowing
- Absorption terracing
- Contour trenches
- Inter-row water harvesting
- Inter-plot water harvesting of 1:1 cropped to un-cropped land
- Dead furrows at 3.6 m intervals

Crop management

- **Varieties:** RHB-90, RHB-121, JK, Proagro, Raj-171, Raj Bajra chari
- **Hybrids:** GHB – 27, GHB-30, GHB-32, GHB-235, GHB-181, GHB-15
- **Seed rate:** 3.75-4 kg/ha
- **Planting pattern:** 60 x 15 cm
- **Nutrient management:** 80 kg N + 40 kg P₂O₅ /ha.

Suitable cropping systems

- Pearl millet + cluster bean (2:1)
- Pearl millet + greengram
- Pearl millet + pigeonpea (2:1)

Farm Implements / tools

- Multipurpose Tool bar
- Dry land weeder

Alternate Farming Systems

Marginal lands :

- **Silviculture:** Acacia tortilis
- **LCC III:** Alley cropping (Jatropha spp + Greengram)
- **LCC IV:** Silvipastoral system (Prosopis cineraria + cenchrus)
- **Horti – Pastoral system:** Ber + cenchrus setigerus
- **Fodder/ green biomass:** Alianthus excelsa, A.lebbeck, D.sissoo, A.indica, P.cineraria, Dichrostachys
- **Fruit:** Ber, Date palm, Jamun, Fig, Phalsa, Karonda
- **Medicinal/ Aromatic Plants:** Plantago ovata, Cassia angustifolia, Safed musli, Papaver somniferum
- **Vegetables:** Clusterbean, Cowpea, Amaranth, round melon, Long melon
• **Animal Component:** Female and male Cattle, Female Buffaloes, Sheep, Goats

Contingent planning

• **Good and normal rainfall**
 Grow large areas under improved varieties of cereals, pulses and oilseeds during *kharif* on heavy soils, conserve soil moisture during *kharif* and take an early *rabi* crop of rapeseed mustard or chickpea.

• **Normal onset followed by long gaps in rainfall**
 Drought hardy crops with deep root system and low water requirement like sorghum, castor, pigeonpea, sesame should be preferred over maize.

• **Delayed onset of monsoon:**
 Grow early maturing pulses (greengram, blackgram), oilseeds (sesame) and fodder crops (sorghum + cowpea). Intercropping of maize + blackgram / pigeon pea, groundnut + sesame is recommended.

• **Early withdrawal of monsoon:**
 Conserve the soil moisture received during last season and grow early *rabi* crops like rapeseed mustard, chickpea, safflower etc.
In Tamil Nadu there are two districts viz. Tiruchirapalli and South Arcot under low runoff and high yield gap region. The trends in area, production and productivity of pearlmillet in Tamil Nadu (1980 - 2005) are shown in Fig. 19.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamil Nadu</td>
<td>Tiruchirapalli (Uplands, Central Tamil Nadu)</td>
<td>Low runoff and Medium yield gap</td>
</tr>
<tr>
<td></td>
<td>South Arcot (Central East Tamil Nadu)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Tiruchirapalli</th>
<th>South Arcot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
<td>Hot moist arid Semi hot moist semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Orthids – 25%; Sandy Alfisol- 75%, Deep red loamy soils</td>
<td>Orthids –85%; Sandy Alfisol – 15% Deep red loamy soils Deep clayey and cracking coast and deltaic alluvium - derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>869</td>
<td>923</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>2091</td>
<td>1826</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120-150</td>
<td>120-150</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Soil water balance studies
- Runoff-erosion measurements
- More emphasis on *in situ* water conservation
- Increasing soil infiltration capacity and reducing soil crusting problem
- Inter-plot water harvesting of 1:1 cropped to uncropped land
- Dead furrows at 3.6 m interval
- Absorption/drainage type terraces
- On sloppy land contour cultivation along vegetative hedge of Vetiver or *Leucaena* at 0.5 m V.I. in sorghum and cotton crops.

Crop management

- **Varieties:** K-2, K-3, HB-3, HB-4, K-6, COH (cu) 8, GHB-526, GHB-558, ICMH-356, MLBH-267, GK-1004, PB-180, PAC-903
- **Seed rate:** 4-6 kg/ha
- **Planting pattern:** 45 X 15 cm
- **Nutrient management:** 40 kg N + 20 kg \(\text{P}_2\text{O}_5 \) (as rock phosphate) /ha + *Azospirillum*

Farm Implements / tools

- Tractor drawn seed drill
Fig. 19. Trends in Area, Production and Productivity of Pearl millet in Tamil Nadu (1980-2005)
• Bullock drawn seed drill
• Multipurpose implement

Alternate Farming Systems

• Alley cropping: Subabul (6 m width) + Sorghum/ Pearlmillet/ Pigeonpea,
 Subabul (6 m width) + mulching with Subabul leaves in alleys + Cotton/blackgram/Sunflower
• Agroforestry: Tamarind/Neem + Sorghum (K-8) Tamarind/Neem + Blackgram (C0-5)
• Agro-horti system: Tamarind (PKM-1) + Blackgram (K-1)
• Silvipasture: *Alianthus excelsa* + Blackgram, *Alianthus excelsa* + Dinanath grass
• Fodder/ green biomass: *Alianthus excelsa*, *Albizzia lebbeck*, *Leucaena leucocephala*, *Hardwickia binata*, *A.indica*
• Fruit: Mango, Sapota, Fig, Jamun and Pomegranate
• Medicinal/ Aromatic Plants: *Cassia aungstifolia*, *Palma rosa*, *Vetiveria zyzanoides*, Jasmine, Rose, geranium
• Vegetables: Okra, Bittergourd, Ridge gourd, Chilles, Brinjal, Amaranthus
• Animal Component: Sheep, Goat

Integrated Farming System

In dryland maintenance of two milch cows along with agricultural component indicated that percentage contribution of agricultural component to the total gross and net income of Integrated Farming system was 10 and 6.7 per cent as compared to the percentage contribution of dairy component with 90 and 93.3 per cent.

Contingent planning

• Normal monsoon conditions: With the onset of North east monsoon in September – October, crops like sorghum, cotton, pearlmillet, pulses and oilseeds can be sown. Sorghum (K-Tall or K-8) may be sown during the month of September
• Delayed onset of monsoon: If the rains the received late in October, pearlmillet (WCC-75) can be sown. Pulses like blackgram, greengram, and oilseeds like sunflower (K-1) can be grown if the rains are received later.
• Very delayed monsoon: Sunflower (K-1), sesame (TMV-3), Senna and Coriander can be sown upto the first week of November under very delayed monsoon conditions.
• Early withdrawal of monsoon: Short duration crops like pearlmillet (Co.6 and X 4) with 75 days duration and sunflower (K-1) with 65 days duration are grown.

Low runoff and medium yield gap:
UTTAR PRADESH

In Uttar Pradesh there are four districts viz. Agra, Mathura, Etawah and Aligarh under low runoff and medium yield gap region and two districts viz. Allahabad and Moradabad under low runoff and high yield gap region. The trends in area, production and productivity of pearl millet in Uttar Pradesh (1980 - 2005) are shown in Fig. 20.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uttar Pradesh</td>
<td>Agra and Mathura (Ganga – Yamuna Doab)</td>
<td>Low runoff and</td>
</tr>
<tr>
<td></td>
<td>Etawah (Ganga – Yamuna Doab, Central Uttar Pradesh)</td>
<td>Medium yield gap</td>
</tr>
<tr>
<td></td>
<td>Aligarh (Ganga – Yamuna Doab, Western Uttar Pradesh)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Agra</th>
<th>Mathura</th>
<th>Etawah</th>
<th>Aligarh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot semi arid</td>
<td>Hot semi arid</td>
<td>Hot moist semi arid</td>
<td>Hot semi arid</td>
</tr>
<tr>
<td>Soils</td>
<td>Inceptisols – 100%, Deep loamy alluvium - derived soils</td>
<td>Inceptisols – 100%, Deep loamy alluvium - derived soils</td>
<td>Inceptisols – 100%, Deep loamy alluvium - derived soils</td>
<td>Inceptisols – 100%, Deep loamy alluvium - derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>766</td>
<td>696</td>
<td>553</td>
<td>774</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1467</td>
<td>1552</td>
<td>1464</td>
<td>1530</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>90-120</td>
<td>90-120</td>
<td>120-150</td>
<td>60-120</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Compartmental bunding after seedling emergence
- Contour farming
- Graded border strips
- Sowing across the slope and ridging later
- To mitigate early season drought, one extra inter cultivation along with straw mulch @ 5 t/ha is effective.
- One protective irrigation is only solution to control late season drought effect during summer.
- Deep tillage during summer and making compartmental bunding after seedlings emergence.
- Criss-cross ploughing by country plough after each effective rainfall.
- To mitigate early season drought, one extra inter cultivation along with straw mulch @ 5 t/ha is effective. One protective irrigation is only solution to control the adverse effect of late season drought.

Crop management

- **Hybrids**: 9330, 9444, 7688, Pusa-23, Pusa-322, HHB-67, PB-106, MBH – 110, MBH – 163, WCC – 75
- **Open pollinated varieties**: Raj-171, ICTP-8203, ICMV-155
- **Seed rate**: Varieties 4-4.5 kg/ha
Fig. 20. Trends in Area, Production and Productivity of Pearlmillet in Uttar Pradesh (1980-2005)
• **Hybrids**: 5 – 6 kg/ha

• **Planting pattern**: 45 x 15 cm

• **Nutrient management**
 - 60 kg N and 40 kg P$_2$O$_5$/ha. P basal and N in two splits 25% at sowing and 75% at tiller initiation
 - 60 kg N and 40 kg P$_2$O$_5$/ha. P basal and N in two equal splits 25% at sowing and 75% at tiller initiation
 - 30 kg N through FYM and 30 kg N through inorganic fertilizers

• **Some other important practices**
 - Sowing in lines in first fortnight of July
 - Extra inter cultivation along with mustard straw mulch @ 5 tones/ha increase pearlmillet yield in early season drought situation.
 - Removal of every third row increase the pearlmillet yield in late season drought
 - Transplanting of pearlmillet along with one protective irrigation is much advantageous under late seeding condition.
 - Transplanting along with one protective irrigation in late seeding condition
 - Mulching with wheat straw @5 t/ha
 - Pearlmillet + cowpea (2:1) is grown for fodder and harvested after 45 to 50 days up to end of Hugust
 - Deep tillage along with compartmental bunding + 60 kg N/ha

Suitable cropping systems

- Pearlmillet + clusterbean (2:1)
- Pearlmillet + cluster bean maloson or HG-75 (2:2)
- Greengram + pearlmillet (3:1)
- Pearlmillet + cowpea
- Pearlmillet + sesame
- Pearlmillet + cowpea (fodder) – chickpea + rapeseed mustard
- Pearlmillet + blackgram
- Pearlmillet + cowpea (fodder) – chickpea + rapeseed mustard
- Pearlmillet + rapeseed mustard
- Pearlmillet + pigeonpea (2:1)
- Pearlmillet + blackgram (2:1)
- Pearlmillet + clusterbean (2:1)

Farm Implements / tools

- Dryland weeder is quite effective and economic in controlling the weeds in both seasons.
Alternate Farming Systems

- **Agro horticulture**: Ber + greengram/ clusterbean/ cowpea for grain purpose
 Ber + pearl millet (fodder)

- **Fodder/green biomass**: *A.indica*, *Leucaena*, *A. lebbeck*, *H. binata*, *Pongamia*, *C. siamea*, *Bauhinia*

- **Fruit**: Mango, gauva, Amla, Phalsa, Jamun, Caronda

- **Medicinal & Aromatic Plants**: *Papaver somniferum*, *Palma rosa*, *Cymbopogan flexuosus*, *Vetiveria zizanoides*

- **Vegetables**: Tomato, Chillies, Brinjal, Okra, Bottle gourd, Amaranthus, Cowpea.

- **Animal Component**: Female Cattle, Female Buffaloes, Goat and Poultry

Contingent Planning

Kharif

 Pearlmillet (Proagro 9402), pigeonpea (UPAS-120), greengram (K-851), clusterbean (RGC-197)

- As the monsoon progresses

- Rainfall upto end of July :
 Cereals and Pulses: Pearlmillet (Proagro 9402) intercropped with pigeonpea (UPAS-120, IPCL-87) blackgram (T-9) and greengram (K-851). Pure crop of cluster bean, blackgram and greengram.

- Oilseeds: Groundnut (Chandra) and sesame (Pratap) upto the end of third week of July

- Rainfall upto third week of August

- Cereals and pulses: Clusterbean (RGC-197) and transplanting of pearlmillet

- Cereals and pulses: Clusterbean (RGC-197) and transplanting of pearlmillet (MBH-163)

- Rainfall upto end of August

- Clusterbean as pure crop (RGC-197)

- Castor with a seed rate of 15 kg/ha.

Rabi:

- Rapeseed mustard (Pusa Jaikisan), Barley, Ratna, Chickpea (K 850), lentil (L 9-12), and

- rapeseed mustard (TMH 1) and safflower in the order.
Soil and water conservation
- Inter-plot water harvesting
- Raised bed and sunken system

Crop management
- Varieties: HHB 67-2, WCC-75, Pusa 23
- Seed rate: 3.75-5kg/ha
- Planting Pattern: 45 X 10 – 15 cm

Suitable cropping systems
- Pearlmillet - chickpea
- For fodder: Maize + cowpea-oats
- Pearl millet + cowpea – oats

Farm Implements / tools

<table>
<thead>
<tr>
<th>Tool / implement</th>
<th>Cost/unit</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullock drawn Malviya multi</td>
<td>Rs. 2350/-</td>
<td>1. For field preparation</td>
</tr>
<tr>
<td>- farming machine</td>
<td></td>
<td>2. For seeding dryland crops and fertilizing through mechanical metering</td>
</tr>
<tr>
<td>- dryland system</td>
<td></td>
<td>device</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. For intercultivation between two plant rows (particularly Kharif</td>
</tr>
<tr>
<td></td>
<td></td>
<td>season crop)</td>
</tr>
<tr>
<td>Dryland weeder</td>
<td>Rs.70/-</td>
<td>For weed control between plant rows of rainfed crops</td>
</tr>
</tbody>
</table>

Alternate Farming Systems
- Agro horticulture: Guava + pigeonpea/ field pea
- Fodder/green biomass: *Luecaena leucocephala*, *Azadirachta indica*, *Albizia lebbeck*, *Bauhinia purpurea*, *A. procera*, *B. monosperma*, *A. amara*, *D. sissoo*
- Fruit: Guava, Amla, Ber, Mango Bael, Jamun
- Medicinal & Aromatic Plants: *Papaver somniferum*, *Cymbopogan flexuosus*, *P. rosalea*, *Palma rosa*, *Vetiveria zylandoides*
Vegetables: Bottle gourd, Brinjal, Chillies, Cluster bean, Cowpea, round melon

Animal Component: Female and male Cattle, Female Buffaloes, Sheep, Goat and Poultry

Contingent planning

Normal season:

Recommended crop and varieties along with other cultural practices should be followed as under:

Kharif

- **Rice:** NDR-97, NDR-118, Govind and Vandana
- **Maize:** Ganga safed-2, Knachan, Jaunpuri
- **Pearl millet:** HHB 67-2, WCC-75, Pusa-23, BJ-104, Pusa-23, Pusa-322
- **Blackgram:** T.9, Pant U-19, Pant U-35
- **Greengram:** Jyoti Jagriti, Janpriya, Pant moong-1, Narendra moong-1
- **Sesame:** T4, T12, Gujrat til-1
- **Pigeonpea:** Bahar, NA-1, T21

Rabi

- **Lentil:** Pant L-406, PantL-639, L-4076, K-75
- **Wheat:** HUW-533, K-8027 and C-306
- **Barley:** DL-3, Jyoti, K-125
- **Rapeseed mustard:** Varuna, Vardhan, Sanjukta, Kranti
- **Linseed:** Garima, Neelam
- **Chickpea:** Pusa 256, Awarodhi

Aberrant weather

- **Normal onset of monsoon followed by long gaps in rainfall:**
 - In the case of very early break in monsoon i.e. 7-10 days after seeding and if seedlings are killed resown with the same variety.
 - Gap filling/transplanting in case of cereals like upland rice and pearl millet may be done if drought occurs about a month after seeding and is followed by showers. Follow this by light topdressing i.e. 10-15 kg/ha. For this purpose community nurseries or emergency nurseries should be kept ready.

- **Delayed onset of monsoon:**
 - If monsoon sets in as late as the last week of July, short duration upland rice such as NDR-97 and Vandana are recommended on medium & low lands. Uplands should be considered for Pigeonpea base intercrop. If rains are delayed beyond the period but start somewhere in the first to second week of August and growing season is reduced to 60-70 days, then the cultivation of hybrid pearl millet (BJ560, BJ.104), blackgram (T9), greengram (Jagriti, Jyoti) should be taken up. Pulse base intercropping is also recommended. Yet another alternative could be to harvest a fodder of either sorghum, pearl millet, maize or mixture of either of cowpea, blackgram, greengram and one of the above fodder crops. These crops will be followed by winter crops like mustard, barley, lentil, linseed and chickpea.

- **Early stoppage of rains towards the end of season:**
 - Normal growing of short duration *kharif* crops such as upland rice (NDR-97 or Vandana), blackgram (T-9), sesame (T-13) may be done. Sorghum, maize, pearl millet, and cowpea for fodder could be...
harvested. If the rain stops very early, i.e. by the end of August or first week of September, only fodder crops and grain legumes could be harvested. Later on as a mid-season correction sunflower could be planted as it could be sown any time in the year.

• In extreme drought conditions that prevailed during kharif 1979-80 and 1987-88 season the following observations were made and appear to be worth consideration
 • Only short duration crops like grain legumes (black and greengram) should be grown
 • Among cereals, pearl millet (BJ-104) gave a fair performance
 • Intercropping black gram in inter rows of pigeon pea was found successful
 • Rice crop, if already sown is not likely to succeed, may be ploughed under to conserve the moisture in the soil. This may permit growing of lentil, chickpea, rapeseed mustard or barley during rabi
 • Late season drought coinciding with reproductive phase of upland rice is frequently experienced (3/7 years). If period of drought approaches 8-10 days, 25% yield could be compensated by one life saving irrigation (5cm depth)

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uttar Pradesh</td>
<td>Moradabad (North West Uttar Pradesh)</td>
<td>Low run off and High yield gap</td>
</tr>
</tbody>
</table>

Agro-geographic setting

- **Climate**: Hot semi arid, Hot dry/moist sub humid (transitional)
- **Soils**: Inceptisols – 100%
 - Deep loamy alluvium - derived soils, Deep loamy to clayey alluvium - derived soils
- **Annual rainfall (mm)**: 953
- **Potential evapotranspiration (mm)**: 1418
- **Length of growing period (LGP) / moisture availability period (days)**: 60-150

Soil and water conservation

- Compartmental bunding after seedling emergence
- Contour farming
- Graded border strips
- Sowing across the slope and ridging later
- To mitigate early season drought, one extra inter cultivation along with straw mulch @ 5 t/ha is effective.
- One protective irrigation is only solution to control late season drought effect during summer.
- Deep tillage during summer and making compartmental bunding after seedlings emergence.
- Criss-cross ploughing by country plough after each effective rainfall.
- To mitigate early season drought, one extra inter cultivation along with straw mulch @5 t/ha is effective. One protective irrigation is only solution to control the adverse effect of late season drought.
Crop management

- **Varieties**: WCC-75, Pusa 23
- **Hybrids**: MBH – 110, MBH – 163
- **Seed rate**: Hybrids - 4-4.5 kg/ha
 - **Varieties**: 3. 5 kg/ha
- **Planting pattern**: 45 X 15 cm
- **Nutrient management**:
 - 60 kg N and 40 kg P₂O₅/ha. P basal and N in two splits 25% at sowing and 75% at tiller initiation
 - 60 kg N and 40 kg P₂O₅/ha. P basal and N in two equal splits at sowing and tiller initiation
 - 30 kg N through FYM and 30 kg N through inorganic fertilizers
- **Some other important practices**
 - Sowing in lines
 - Extra inter cultivation along with mustard straw mulch @ 5 tons/ha increase pearlmillet yield in early season drought situation.
 - Removal of every third row increase the pearlmillet yield in late season drought
 - Transplanting of pearlmillet along with one protective irrigation is much advantageous under late seeding condition.
 - Transplanting along with one protective irrigation in late seeding condition

Suitable cropping systems

- Pearlmillet + clusterbean (2:1)
- Pearlmillet + greengram
- Pearlmillet + cowpea
- Pearlmillet + sesame
- Pearmllet – chickpea
- Pearmllet + pigeonpea (2:1)
- Pearmllet + blackgram (2:1)

Farm Implements / tools

- Dryland weeder is quite effective and economic in controlling the weeds in both seasons.

Alternate Farming Systems

- **Fodder/green biomass**: A.indica, Leucaena, A. lebbeck, H. binata, Pongamia, C. siamea, Bauhinia
- **Fruit**: Mango, guava, Amla, Phalsa, Jamun, Caronda
- **Medicinal & Aromatic Plants**: Papaver somniferum, Palma rosa, Cymbopogan flexuosus, Vetiveria zyzanoides
Contingent Planning

Kharif

- **Vegetables:** Tomato, Chillies, Brinjal, Okra, Bottle gourd, Amaranthus, Cowpea.
- **Animal Component:** Female Cattle, Female Buffaloes, Goat and Poultry

Under normal rainfall: Pearlmillet (WCC-75, Pusa-23, Proagro-9402), pigeonpea (UPAS-120), greengram (K-851), Clusterbean (RGC-197)

As the monsoon progresses
- Rainfall upto end of July: Pearlmillet (WCC-75, Pusa-23) intercropped with cowpea and sesame
- Cereals and Pulses: Pearlmillet (Proagro-9402) intercropped with pigeonpea (UPAS-120, IPCL-87) blackgram (T-9) and greengram (K-851). Pure crop of clusterbean, blackgram and greengram.
- Oilseeds: Groundnut (Chandra) and sesame (Pratap) upto the end of third week of July

Rainfall upto third week of August
- Cereals and pulses: Clusterbean (RGC-197) and transplanting of pearlmillet (Pusa-23)
- Cereals and pulses: Clusterbean (RGC-197) and transplanting of pearlmillet (MBH-163)

Rainfall upto end of August
- Clusterbean as pure crop (RGC-197)
- Castor with a seed rate of 15 kg/ha.

Rabi:
- Rapeseed mustard (Pusa Jaikisan), barley (Ratna), chickpea (K-850), lentil (L-9-12) and taramira (TMH-1) and safflower in the order.

Cultural practices like shallow intercultural to eradicate weeds, maintain soil mulch to conserve soil moisture, application of surface mulch, thinning of crops by removing alternate rows as in pearlmillet and recycling of stored runoff water are generally resorted to.
Districtwise Promising Technologies for Rainfed Cereals based Production System in India

Prioritised cultural option for rainfed pearl millet based production system

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Prioritised Options</th>
<th>Avg yield (kg/ha)</th>
<th>Expected yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gujarat</td>
<td>Surendranagar</td>
<td>Efforts for wide spread adoption of improved varieties, crop management technologies. In-situ soil conservation technologies</td>
<td>606</td>
<td>727 to 758</td>
</tr>
<tr>
<td></td>
<td>Ahmedabad</td>
<td>Better water management techniques including surface drainage along with improved management techniques</td>
<td>698</td>
<td>838 to 873</td>
</tr>
<tr>
<td></td>
<td>Rajkot</td>
<td>Adoption of improved management practices including high yield cultivars, in situ water management techniques</td>
<td>541</td>
<td>650 to 676</td>
</tr>
<tr>
<td></td>
<td>Amreli, Bhavnagar, Junagadh</td>
<td>Efforts for wide spread adoption of improved varieties, crop management technologies. In-situ soil conservation technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Haryana</td>
<td>Gurgaon Efforts for wide spread adoption of improved varieties, crop management technologies. In-situ soil conservation technologies</td>
<td>541</td>
<td>650 to 676</td>
</tr>
<tr>
<td></td>
<td>Kamataka</td>
<td>Belgaum Crop diversification</td>
<td>334</td>
<td>400 to 418</td>
</tr>
<tr>
<td></td>
<td>Bijapur</td>
<td>Efforts for wide spread adoption of improved varieties, crop management technologies. In-situ soil conservation technologies</td>
<td>606</td>
<td>727 to 758</td>
</tr>
<tr>
<td></td>
<td>Gulbarga, Raichur</td>
<td>Adoption of improved management practices including high yield cultivars, in situ water management techniques</td>
<td>541</td>
<td>650 to 676</td>
</tr>
<tr>
<td></td>
<td>Madhya Pradesh</td>
<td>Morena Adoption of high yield cultivars, water harvesting for supplement irrigation, pest and disease management techniques for further increase in yield</td>
<td>1062</td>
<td>1221 to 1274</td>
</tr>
<tr>
<td></td>
<td>Maharashtra</td>
<td>Sangli Adoption of improved management practices including high yield cultivars, in situ water management techniques</td>
<td>331</td>
<td>397 to 414</td>
</tr>
<tr>
<td></td>
<td>Satara</td>
<td>Crop diversification</td>
<td>334</td>
<td>400 to 414</td>
</tr>
<tr>
<td></td>
<td>Nasik</td>
<td>Efforts for wide spread adoption of improved varieties, crop management technologies. In-situ soil conservation technologies</td>
<td>606</td>
<td>727 to 758</td>
</tr>
<tr>
<td></td>
<td>Ahmednagar, Aurangabad, Beed, Pune</td>
<td>Better water management techniques including surface drainage along with improved management techniques to increase productivity</td>
<td>698</td>
<td>838 to 873</td>
</tr>
<tr>
<td></td>
<td>Dhule</td>
<td>Efforts for wide spread adoption of improved varieties, crop management technologies. In-situ soil conservation technologies</td>
<td>868</td>
<td>998 to 1042</td>
</tr>
<tr>
<td></td>
<td>Jalna</td>
<td>Better water management techniques including surface drainage along with improved management techniques to increase productivity</td>
<td>779</td>
<td>935 to 974</td>
</tr>
<tr>
<td></td>
<td>Jalgaon</td>
<td>Adoption of high yield cultivars, water harvesting for supplement irrigation, pest and disease management techniques for further increase in yield</td>
<td>1062</td>
<td>1221 to 1274</td>
</tr>
<tr>
<td>State</td>
<td>City</td>
<td>Activities</td>
<td>Codes</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>---</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Rajasthan</td>
<td>Jaipur</td>
<td>Better water management techniques including surface drainage</td>
<td>698</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>along with improved management techniques to increase productivity</td>
<td>838 to 873</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alwar, Bharatpur,</td>
<td>Efforts for wide spread adoption of improved varieties, crop management</td>
<td>868</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dholpur, Sawai</td>
<td>technologies, In-situ soil conservation technologies</td>
<td>998 to 1042</td>
<td></td>
</tr>
<tr>
<td>Tamilnadu</td>
<td>Trichirapalli</td>
<td>Adoption of improved management practices including high yield cultivars,</td>
<td>541</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>in situ water management techniques</td>
<td>650 to 676</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.Arcot</td>
<td>Adoption of high yield cultivars, water harvesting for supplement irrigation,</td>
<td>1062</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pest and disease management techniques for further increase in yield</td>
<td>1221 to 1274</td>
<td></td>
</tr>
<tr>
<td>Uttar</td>
<td>Agra, Aligarh, Etah,</td>
<td>Efforts for wide spread adoption of improved varieties, crop management</td>
<td>1219</td>
<td></td>
</tr>
<tr>
<td>Pradesh</td>
<td>Mathura</td>
<td>technologies, in-situ soil conservation technologies</td>
<td>1402 to 1463</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allahabad, Moradabad</td>
<td>Adoption of high yield cultivars, water harvesting for supplement irrigation,</td>
<td>1062</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pest and disease management techniques for further increase in yield</td>
<td>1221 to 1274</td>
<td></td>
</tr>
<tr>
<td>West Bengal</td>
<td>Buduan</td>
<td>Adoption of high yield cultivars, water harvesting for supplement irrigation,</td>
<td>1062</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pest and disease management techniques for further increase in yield</td>
<td>1221 to 1274</td>
<td></td>
</tr>
</tbody>
</table>
FINGERMILLET BASED PRODUCTION SYSTEM

Fingermillet (*Eleusine coracana* L.), is the third most important millet grown in many states of India under diverse situation of soils, temperature and rainfall. It is popularly known as ragi in India. It is also known as mandua, ragalu, nagli, kapai and madua in different parts of the country. It is extensively grown in Karnataka, Tamil Nadu, Andhra Pradesh, Orissa, Bihar, Jharkhand, Bastar region of Chhatisgarh, Gujarat and Maharashtra and in the hilly regions of Uttarakhand and Himachal Pradesh. This is an important staple food crop in southern parts of Karnataka. The height of cultivars varies from 40 to 100 cm and the ear length ranges from 3 to 13 cm. The colour of grains varies from white through orange-red, deep brown and purple, to almost black. The seed coat of finger millet is generally copper brown in color and contains large proportion of phytochemicals and pigments. However, different grades of brown and white coloured varieties of the millet are also cultivated. Polyphenols are the important phytochemicals having the neutraceutical qualities. The grains are smaller than those of pearl millet and the mean 1000-seed weight is about 2.6 g.

Fingermillet is grown as a rainy season crop from June to November – December, using long duration varieties and as a (cold) post – rainy season crop, from October - November, using early types. Liberal sheep and cattle manure is applied along with green manures such as cowpea or sunhemp, and oil cakes. Fingermillet is harrowed and weeded at intervals of fortnight from 15-20 days of sowing. It matures in about 95 - 135 days after sowing, depending on variety, season, rainfall and soil moisture holding capacity. Rainfed crops are cut close to ground. Stalks are allowed to dry for a day or two in field, and then bundled and stacked for about 2 months before threshing. To separate the grains, dried ear heads are beaten with sticks. Sheaves are trodden by bullocks or crushed by stone rollers. The average grain yield of the rainfed crop ranges from 1.0 to 1.5 t/ha. The fodder yield ranges from 3-9 t/ha in the case of the late duration cultivars.

Fingermillet is grown in 1.89 mha in 346 districts out of which 1.70 mha is rainfed. About 85% of the rainfed area (1.03 mha) is in 12 districts.

The trends in area, production and productivity of fingermillet in India (1980 - 2005) are shown in Fig. 21.

<table>
<thead>
<tr>
<th>Item</th>
<th>No. of districts</th>
<th>Area under fingermillet ('000 ha)</th>
<th>Area under rainfed fingermillet ('000 ha)</th>
<th>Gross cropped area ('000 ha)</th>
<th>Yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sixteen states</td>
<td>346</td>
<td>1891</td>
<td>1697</td>
<td>1678.68</td>
<td>406</td>
</tr>
<tr>
<td>85% rainfed fingermillet area in the states</td>
<td>12</td>
<td>1124</td>
<td>1031</td>
<td>1047.5</td>
<td>1150</td>
</tr>
</tbody>
</table>

The trends in area, production and productivity for different states are given in the following table:

<table>
<thead>
<tr>
<th>Area</th>
<th>Production</th>
<th>Productivity</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreasing</td>
<td>Decreasing</td>
<td>Stable</td>
<td>Orissa</td>
</tr>
<tr>
<td>Stable</td>
<td>Stable</td>
<td>Stable</td>
<td>Maharashtra</td>
</tr>
<tr>
<td>Stable</td>
<td>Stable</td>
<td>Increasing</td>
<td>Andhra Pradesh</td>
</tr>
<tr>
<td>Decreasing</td>
<td>Decreasing</td>
<td>Decreasing</td>
<td>Karnataka</td>
</tr>
</tbody>
</table>

Mysore, Mandya, Koraput, Ganjam and Kalahandi support the traditional fingermillet zone where both yield and area growth rates are stagnant. In other districts the effect of technology is visible with production increase or maintenance despite variation in area.

Common intercrops grown with fingermillet are fieldbean (*Lablab purpureus*), pigeonpea (*Cajanus cajan*), cowpea (*Vigna sinensis*), niger (*Guizotia abyssinica*), fodder sorghum (*Sorghum bicolor*) groundnut (*Arachis hypogea*), castor bean (*Ricinus communis*) and other cereals. Mixing of nine crops (Akkadi) is a common practice in Karnataka. The popular cropping systems are fingermillet-groundnut: fingermillet - pigeonpea/horsegram: fingermillet – cowpea or cowpea – fingermillet.
Fig. 21. Trends in Area, Production and Productivity of Fingermillet in India (1980-2005)

The details on associated crops and livestock arrived after clustering in the cropping zone are:

<table>
<thead>
<tr>
<th>Crops</th>
<th>Animals</th>
<th>Districts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>Sheep</td>
<td>Visakapatanam, Mahaboobnagar, Mysore</td>
</tr>
<tr>
<td>Fingermillet</td>
<td>Female Cattle</td>
<td>Shimoga, Nasik, Pune, Kolhapur, Ganjam</td>
</tr>
<tr>
<td>Horsegram</td>
<td>Male Buffalo</td>
<td>Kalahandi, Koraput</td>
</tr>
<tr>
<td>Fingermillet</td>
<td>Sheep</td>
<td>Kolar, Mandya</td>
</tr>
<tr>
<td>Horsegram</td>
<td>Female Cattle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male Buffalo</td>
<td></td>
</tr>
</tbody>
</table>

The Recommendations for this production system are given state and district-wise in alphabetical order.
ANDHRA PRADESH

In Andhra Pradesh there are two districts viz. Mahaboobnagar and Visakhapatnam under low runoff and medium yield gap region. The trends in area, production and productivity of finger millet in Andhra Pradesh (1980 - 2005) are shown in Fig. 22.

Recommendations details follow:

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>Mahaboobnagar</td>
<td>Low runoff and Medium yield gap</td>
</tr>
<tr>
<td></td>
<td>Visakhapatnam</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Mahaboobnagar</th>
<th>Visakhapatnam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
<td>Hot (moist/ dry) sub humid</td>
</tr>
<tr>
<td>Physiography</td>
<td>North Telangana Plateau</td>
<td>Eastern ghats and North Coastal Andhra Pradesh</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertisols – 40%; Vertic soils – 20%; Sandy Alfisols – 40%</td>
<td>Orthids – 50%; Sandy Alfisols – 50%</td>
</tr>
<tr>
<td></td>
<td>Deep loamy, clayey mixed red and black soils</td>
<td>Medium to deep loamy red and lateritic soils, deep loamy to clayey coastal and deltaic-alluvium derived soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>792</td>
<td>975</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1678</td>
<td>1480</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120-150</td>
<td>180-210</td>
</tr>
</tbody>
</table>
Fig. 22. Trends in Area, Production and Productivity of Fingermillet in Andhra Pradesh (1980-2005)
Soil and water conservation

Mahaboobnagar
• Inter-plot water harvesting of 1:1 uncropped to cropped land

Visakhapatnam
• Bench terracing
• Compartmental bunding
• Graded border strips
• Sowing across the slope and ridging later
• *Insitu* conservation of soil moisture

Crop management

Visakhapatnam
• **Varieties**: Kalyani, Godavari, AKP-2, Simhadri, Ratnagiri, Gautami, Padmavati, Saptagiri, Sharada, Ratnagiri
• **Seed rate**: 8-10 kg/ha
• **Planting pattern**: 22.5 x 10 cm or 22.5 x 15 cm
• **Intercropping system**: Intercropping of pigeon pea (long duration type) with finger millet in 8:2 proportion found profitable.
• **Nutrient management**: FYM 10 t/ha + 40 kg N + 20 kg P₂O₅ + 20 kg K₂O/ha
• **Some other important practices**
• **Sowing**: *kharif* – July – August
• **Seed treatment with Thiram 3 g/kg seed**

Farm implements/ tools

Mahaboobnagar
• CRIDA Groundnut planter (four row)
• Bullock drawn two-row sweep cultivator
• Modified two-row blade harrow
• Bullock drawn country plough attached with Pora tube

Visakhapatnam
• Hand Hoe

Alternate farming systems

Mahaboobnagar
• **Parkland systems**: *Azadirachta indica*, *Acacia nilotica*, *Tamarindus indica*
• **Trees on bunds**: Tectona grandis, *Leucaena leucocephala*, *Borassus flabellifera*, *Cocos nucifera*, *Acacia nilotica var. cupressiformis*
All India Coordinated Research Project for Dryland Agriculture (AICRPDA)

- **Silvipastoral system**: Leucaena leucocephala + Stylosanthes hamata, Leucaena leucocephala + Cenchrus ciliaris
- **Alley cropping**: Leucaena leucocephala + sorghum/pearlmillet, Gliricidia sepium + sorghum/pearlmillet
- **Agro horti system**: Mango + short duration pulses
- **Fodder/green biomass**: Leucaena leucocephala, Azadirachta indica, Albizia lebbeck, Bauhinia purpurea, A. procera, Butea monosperma, A. amara, Delbergia sissoo
- **Medicinal and aromatic plants**: Catharanthus roseus, Cassia angustifolia, Aloe barbadensis, Withia somnifera, Cymbopogan martini, Cymbopogan flexuosus, Al Psoralea, Palma rosa, Vetiveria zyzanoides
- **Dye yielding plants**: Lawsonia inermis, Hibiscus sabdariffa, Tagetus erecta, Indigofera tinctoria, Annato
- **Other economic shrubs**: Curry leaf, Jatropha, Soapnut
- **Animal component**: Female cattle, Female Buffaloes, Male Cattle, Sheep and Goat
- **Other enterprises**: Sericulture, Poultry

Visakhaptanam

- **Fodder/green biomass**: P.pinnata, Albizia sps, Cassia siamea, Grevellea robusta, Delbergia sissoo, Azadirachta indica
- **Fruit**: Mango, Jackfruit, Guava, Lime
- **Medicinal and aromatic plants**: Vetiveria zyzanoides, Cymbopogan flexuosus, Palma rosa, Solanum viarum, Cinnamon, Citronella java
- **Vegetables**: Bottle gourd, Brinjal, Ridge gourd, Watermelon, Long melon, Bitter gourd, Tomato
- **Animal component**: Female and male cattle, Goat

Contingent planning

Mahaboobnagar

- **June**:
 - Sole crop: Sorghum (CSH-5, CSH-6, CSH-9) pearlmillet (MBH-110)
 - Intercrop: Sorghum + pigeonpea (2:1) / pearlmillet + pigeonpea (2:1) in 45 cm row spacing. Pigeonpea duration of 150-180 days may be used.
- **July**:
 - Sole castor (Aruna, GCH-4)
 - Sole fingermillet
 - Bunch variety of groundnut (TMV-2, JL-24)
 - Intercrop: Maize (DHM-101, Ganga-5) + pigeonpea (2:1) at 50 cm spacing.
- **August**:
 - Sole setaria (H-1, Arjuna) for grain to poultry feed and straw for fodder
 - Castor (Aruna, GCH-4) with increased seed rate (15 kg/ha)
KARNATAKA

In Karnataka there is one district viz. Kolar under low runoff and low yield gap region, one district viz. Mandya under low runoff and medium yield gap region and two districts viz. Mysore and Shimoga under medium runoff and medium yield gap region. The trends in area, production and productivity of finger millet in Karnataka (1980 - 2005) are shown in Fig. 23.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kolar</td>
<td>Low runoff and Low yield gap</td>
</tr>
</tbody>
</table>

Recommendations details follow:

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Kolar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Physiography</td>
<td>South Karnataka - Central Karnataka Plateau</td>
</tr>
<tr>
<td>Soils</td>
<td>Sandy Alfisols – 100%</td>
</tr>
<tr>
<td></td>
<td>Medium to deep red loamy soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>734</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1562</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120-150</td>
</tr>
</tbody>
</table>

Soil and water conservation

- **In-situ conservation practices:**
 - Opening a conservation furrow in between the paired rows of pigeonpea or maize for better moisture conservation.
 - Graded ridge and furrows are made on 0.2 to 0.4 percent grade for better conservation of moisture as well as safe disposal in maize cultivation.
Fig. 23. Trends in Area, Production and Productivity of Fingermillet in Karnataka (1980-2005)
• Fall ploughing to a depth of 15-30 cm for better infiltration of rainwater during onset of rains.
• Deep tillage to a depth of 25-30 cm using mould board plough to reduce the weed incidence and increase soil moisture storage for sunflower and maize crops.
• Crop cultivation across the slope with vetiver/pennisetum grass as live barrier at 0.5 m vertical interval to check the velocity of runoff and better moisture conservation and availability for a longer period for fingermillet/groundnut/maize/sunflower crops.

Long-term conservation practices:
• Construction of contour bunds with a cross section of 0.54 m² to control and conserve runoff.
• Construction of graded bunds by providing 0.2 to 0.4 per cent grade with a cross section of 0.36 m² for safe disposal of excess runoff.
• Graded borderer strips with a gradient of 0.1 to 0.5 per cent to fit into the local topography and hydrographic features.
• Broad based bunds of 1.5 m² cross section on contour with 1 m vertical interval for better rainwater conservation.
• Reduced contour bunds (0.36 m²) in combination with vegetative live barriers for effective conservation of rainwater in low rainfall areas (< 600 mm)

Crop management
 • Indaf – 8 for early in July
 • PR-202 for early August sowing
 • Indaf – 5 or Indaf – 9 for late sowing
 • June sowing: L – 5; MR – 1; MR – 6.
 • July 1st fortnight sowing: L – 5; MR – 1; MR – 6.
 • July 2nd fortnight sowing: Indaf – 8; L – 5; HR 911; PR – 202.
• Seed rate: 10 kg/ha
• Planting pattern: 30 x 7.5 cm / 22.5 cm x 10 cm. Spacing is same for drilling and transplanting
• Nutrient management: 10 t FYM/ha + 40 kg N + 50 kg P₂O₅ + 25 kg K₂O /ha. N in 2 equal splits, 1/2 at sowing or drilling and remaining 1/2 at tillering initiation; P and K basal placement
• Some other important practices
 • August sowing – short duration fingermillet, transplant fingermillet 10-12 cm deep ploughing
 • For establishing fingermillet in July – drilling seeds using seed drill / seed cum fertilizer drill is to be done
 • For late establishment – Transplanting the seedlings is essential
Suitable cropping systems

- Cowpea- finger millet
- Greengram- finger millet
- Sesame- finger millet
- Fodder Sorghum – Transplanted finger millet
- Pigeonpea paired rows - finger millet (10:2)
- Finger millet + field bean (8:1)
- Finger millet + pigeonpea (10:2) with conservation furrow between pigeonpea rows
- Finger millet + soybean (1:1)
- Paired rows of pigeonpea followed by 8 rows of finger millet with a furrow inbetween pigeonpea rows. Planting of pigeonpea in May and finger millet in July.

Farm implements/ tools

- **Bullock drawn seed-sum-fertilizer drill (finger millet):** Bullock drawn manual operation for finger millet seeding and fertilizer (hand metered) application (Rs. 1500/- per unit)
- **Multi-furrow opener:** Opening furrows for hand seeding of different crops (Rs. 1300/- per unit)
- **Bent tyne hoe:** Intercultural operation for finger millet (Rs. 350/- per unit)
- **Duck foot hoe:** Intercultural operation for finger millet and groundnut for moisture conservation (Rs. 350/- per unit)
- **Crust breaker:** For breaking the crust to facilitate smooth emergence of the seedling in finger millet and groundnut (Rs. 500/- per unit)
- For opening furrows at 3.3 m interval simultaneously with sowing the seeds of finger millet, the newly designed seed drill with furrow opener is a convenient implement.
- Five coultered, 30 cm row spaced finger millet seed-cum-fertilizer drills should be used for sowing finger millet.

Alternate farming systems

- **Fodder/green biomass:** Casuarina and Silver Oak are better suited than other tree species like eucalyptus, *Azadirachta indica, Leucaena, Acacia* etc. *Faidherbia albida* is more suitable for planting on bunds (E-W direction) in micro-watershed. *Stylosanthes hamata* is most suitable. *Stylasanthes scabra* should be adopted for gravelly shallow soils with low rainfall. *Acacia auriculiformis, Cassia siamea, Dalbergia sissoo*, subabul and amla are more suitable and promising than other deep-rooted high water intensive tree species under high gradient non-arable lands with shallow soils and rock out crops. For better establishment, trench method of planting is better than pit method.
- Bamboo, Jambulina, pongamia, *Azadirachta indica, Albizia lebbeck*, peepal, and ficus species can be planted in the catch pits and pockets of deep soil.
- Grasses like *Pennisetum pedicellatum or Cenchrus ciliaris* and legumes like *Microteliium axillaries* are suitable forage species.
Leucaena leucocephala, Albizzia lebbeck, Dalbergia sissoo, Azadirachta indica, Pongamia, Cassia siamea

- **Fruit**: In situ grafting/budding of fruits trees like mango and ber found to be more economical than using grafted plants. Custard apple, Jack and tamarind were other species suitable to wastelands.

 Mango, Phylanthus and Jambulina performed better in the non-arable land.

Mango, pomegranate, sapota, guava, custard apple, jamun.

- **Medicinal and aromatic plants**: Catharanthus roseus, Cassia angustifolia, Solanum viarum, Dioscorea, Geranium, Pogostemon patchouli, Jasmine

- **Vegetables**: Tomato, chillies, okra, watermelon, bitter gourd, drum stick, brinjal, bottle gourd.

- **Animal Component**: Female cattle, male cattle, female buffaloes, sheep

- **Other enterprises**: Sericulture, piggery, goat rearing, rabbit rearing.

Contingent planning

- **Second fortnight of April**
 - Double cropping: Sesame or greengram or cowpea

- **First fortnight of May**
 - Monocropping: Pigeonpea
 - Sequence cropping: Sesame, cowpea, greengram, blackgram, fodder maize, fodder pearl millet, fodder sorghum.

- **Second fortnight of May**
 - Monocropping: Pigeonpea
 - Sequence cropping: Sesame, cowpea, greengram, blackgram, fodder maize, fodder pearl millet, fodder sorghum.

- **First fortnight of June**
 - Monocropping: Long duration fingermillet, pigeonpea, maize, groundnut
 - Sequence cropping: Fodder maize, fodder sorghum, fodder pearl millet, cowpea

- **Second fortnight of June**
 - Monocropping: Long duration fingermillet, pigeonpea, maize and groundnut
 - Sequence cropping: Sowing of chilli nursery

- **First fortnight of July**
 - Monocropping: Groundnut, long duration finger millet
 - Sequence cropping: Sowing of chilli nursery

- **Second fortnight of July**
 - Monocropping: Groundnut, long/medium duration fingermillet
 - Sequence cropping: Sowing of chilli nursery

- **First fortnight of August**
 - Monocropping: Cowpea, horsegram, short duration finger millet, transplanting chilli
• Sequence cropping: Cowpea, horsegram, short duration finger millet, transplanting chilli.
• Sowing of chilli nursery and short duration finger millet.

Second fortnight of August
• Monocropping: Short duration finger millet, transplanting of medium and long duration fingermillet. Transplanting chilli, cowpea, horsegram
• Sequence cropping: Short duration fingermillet, transplanting of medium and long duration fingermillet, transplanting chilli, cowpea, horsegram, fodder crops (maize, pearl millet, sorghum)

First fortnight of September
• Monocropping: Horsegram or transplanting of short duration finger millet or chilli (with protective irrigation)
• Sequence cropping: Horsegram or transplanting of short duration finger millet or chilli (with protective irrigation)

Alternate/ Contingency crop production practices for drought mitigation:
• Dry seeding in finger millet, sorghum, pigeon pea and castor when monsoon is delayed. For crops with big seeds and less seed rate, like pigeon pea, pelletisation of seed is to be done before dry sowing.
• Maintain optimum plant population by thinning.
• Repeated intercultivations coupled with weeding and weed mulching.
• Preventive measures against pests and diseases.
• Double split top dressing.
• Controlled grazing by animals to reduce excess vegetative growth and to minimize transpiration in fingermillet and horsegram

State District Region

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karnataka</td>
<td>Mandya</td>
<td>Low runoff and Medium yield gap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Mandya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot moist semi arid</td>
</tr>
<tr>
<td>Physiography</td>
<td>South Karnataka Central Karnataka Plateau</td>
</tr>
<tr>
<td>Soils</td>
<td>Sandy Alfisols – 100%</td>
</tr>
<tr>
<td></td>
<td>Medium to deep red loamy soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>674</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1539</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120-150</td>
</tr>
</tbody>
</table>

Soil and water conservation
• **In-situ conservation practices:**
 • Opening a conservation furrow in between the paired rows in pigeon pea and maize for better moisture conservation.
 • Graded ridge and furrows are made on 0.2 to 0.4 percent grade for better conservation of moisture as
• Fall ploughing to a depth of 15-30 cm. for better infiltration of rainwater during onset of rains.
• Deep tillage to a depth of 25-30 cm. using mould board plough to reduce the weed incidence and increase soil moisture storage for sunflower and maize crops.
• Crop cultivation across the slope with Vetiver/ pennisetum grass as live barrier at 0.5 m vertical interval to check the velocity of runoff and better moisture conservation and availability for a longer period for fingermillet/groundnut/maize/sunflower crops.
• More emphasis on *in situ* water conservation
• Reducing soil crusting problem
• Conservation furrows at 3.3 m interval
• Farm pond size of 250 m3 plastered both sides and bottom with cement + sandy clay soils (1:8)
• Opening furrows on 0.2 to 0.4 slope
• Summer tillage
• The existing bund itself could be modified to act as graded bund by internal land smoothening Open end contour bunds (0.8 m2) or graded bunds (0.36 m2) on a slope of 0.2 to 0.4%. Waterways are viable with outlets.
• Developing deeper soil (<45 cm) into graded border strips of 10-12 m width on a gradient of 0.2 to 0.4 percent along the length
• Alleviation of crust is possible with the addition of 10 t FYM/ha, 5 ton maize residue/ha and 25 sand t/ha

Long term conservation practices:
• Construction of contour bunds with a cross section of 0.54 m2 to control and conserve runoff.
• Construction of graded bunds by providing 0.2 to 0.4 per cent grade with a cross section of 0.36 m2 for safe disposal of excess runoff.
• Graded boarder strips with a gradient of 0.1 to 0.5 per cent to fit into the local topography and hydrographic features.
• Broad based bunds of 1.5 m2 cross-sections on contour with 1 m vertical interval for better rainwater conservation.
• Reduced contour bunds (0.36 m2) in combination with vegetative live barriers for effective conservation of rainfall in low rainfall areas (< 600 mm)

Crop management
• **Varieties:** L-5, Indaf–8, MR–1, MR – 6; GPU–28, PR–102, HR–911, GPU–26, Indaf–5, Indaf - 9
 • Indaf – 8 for early in July
 • PR-202 for early August sowing
 • Indaf – 9 and GPU 48 for late sowing
• **Seed rate:** 10 kg/ha
• **Planting pattern:** 30 x 10 cm. Spacing is same for drilling and transplanting
• **Nutrient management:** 10 t FYM/ha + 50 kg N + 50 kg P$_2$O$_5$ + 25 kg K$_2$O /ha. N in 2 equal splits, 1/3 at
sowing or drilling and 2/3 at tillering initiation; P and K basal placement

Some other important practices
- August sowing – short duration fingermillet, transplanted fingermillet 10-12 cm depth – ploughing
- For establishing fingermillet in July – seed drilling is to be done
- For late establishment – transplanting the seedlings is essential

Suitable cropping systems
- Cowpea- fingermillet
- Greengram- fingermillet
- Blackgram - fingermillet
- Sorghum – Transplanted fingermillet
- Pigeonpea paired rows-fingermillet (10:2)
- Finger millet-field bean
- Fingermillet + pigeonpea (10:2) with conservation furrow between pigeonpea rows
- Fingermillet + soybean (1:1)
- Paired rows of pigeonpea followed by 8 rows of fingermillet with a furrow between pigeonpea. Planting of pigeonpea in May and fingermillet in July.

Farm implements / tools
- Bullock drawn seed-sum-fertilizer drill (fingermillet): Bullock drawn manual operation for fingermillet seeding and fertilizer (Hand metered) application (Rs. 1500/- per unit)
- Multi-furrow opener: Opening furrows for hand seeding of different crops (Rs. 1300/- per unit)
- Bent Tyne hoe: Intercultural operation for fingermillet (Rs. 350/- per unit)
- Duck foot hoe: Intercultural operation for fingermillet and groundnut for moisture conservation (Hand metered) (Rs. 350/- per unit)
- Crust breaker: For breaking the crust to facilitate smooth emergence of the seedling in finger millet and groundnut (Rs. 500/- per unit)
- For opening furrows at 3.3 m interval simultaneously with sowing the seeds of finger millet, the newly designed seed drill with furrow opener is a convenient implement.
- Five coultered, 30 cm row spaced finger millet seed-cum-fertilizer drills should be used for sowing finger millet.

Alternate farming systems
- Fodder/green biomass: Casuarina and silver oak are better suited than other tree species like eucalyptus, azadirachta indica, leucaena, acacia etc.
 Faidherbia albida is more suitable for planting on bunds (E-W direction) in micro-watershed.
 Stylosanthes hamata is most suitable. Stylosanthes scabra should be adopted for gravelly shallow soils
with low rainfall. *Acacia auriculiformis*, *Cassia siamea*, *Dalbergia sissoo*, subabul and amla are more suitable and promising than other deep-rooted high water intensive tree species under high gradient non-arable lands with shallow soils and rock out crops. For better establishment, trench method of planting is better than pit method.

Bamboo, jambulina, pongamia, *Azadirachta indica*, *Albizia lebbeck*, peepal, and ficus species can be planted in the catch pits and pockets of deep soil.

Grasses like *Pennisetum pedicellatum* or *Cenchrus ciliaris* and legumes like *Microtelium axillaries* are suitable forage species.

Leucaena leucocephala, *Albizia lebbeck*, *Dalbergia sissoo*, *Azadiracta indica*, *Pongamia*, *Cassia siamea* •

Fruit: *In situ* grafting/ budding of fruits trees like mango and ber found to be more economical than using grafted plants. Custard apple, Jack and tamarind were other species suitable to wastelands.

Mango, phylanthus and jambulina performed better in the non-arable land.

Mango, pomegranate, sapota, guava, custard apple, jamun •

Medicinal and aromatic plants: *Catharanthus roseus*, *Cassia angustifolia*, *Solanum viarum*, *Dioscorea*, *Geranium*, *Pogostemon patchouli*, Jasmine. •

Vegetables: Tomato, chillies, okra, watermelon, drum stick, brinjal, bitter gourd. •

Animal component: Female and male cattle, female buffaloes, Sheep •

Other enterprises: Sericulture, piggery, goat rearing, rabbit rearing.

Contingent planning

• **Second fortnight of April**
 • Double cropping: Sesame or greengram

• **First fortnight of May**
 • Monocropping: Pigeonpea
 • Sequence cropping: Sesame, cowpea, greengram, blackgram, fodder maize, fodder pearlmillet, fodder sorghum.

• **Second fortnight of May**
 • Monocropping: Pigeonpea
 • Sequence cropping: Sesame, cowpea, greengram, blackgram, fodder maize, fodder pearlmillet, fodder sorghum.

• **First fortnight of June**
 • Monocropping: Long duration fingermillet, pigeonpea, maize, groundnut
 • Sequence cropping: Fodder maize, fodder sorghum, fodder pearlmillet, cowpea

• **Second fortnight of June**
 • Monocropping: Long duration fingermillet, pigeonpea, maize and groundnut
 • Sequence cropping: Sowing of chilli nursery

• **First fortnight of July**
• Monocropping: Groundnut, long duration fingermillet
• Sequence cropping: Sowing of chilli nursery

Second fortnight of July
• Monocropping: Groundnut, long/ medium duration fingermillet
• Sequence cropping: Sowing of chilli nursery

First fortnight of August
• Monocropping: Cowpea, horsegram, short duration finger millet, transplanting chilli
• Sequence cropping: Cowpea, horsegram, short duration finger millet, transplanting chilli.
• Sowing of chilli nursery and short duration finger millet.

Second fortnight of August
• Monocropping: Short duration finger millet, transplanting of medium and long duration fingermillet. Transplanting chilli, cowpea, horsegram
• Sequence cropping: Short duration fingermillet, transplanting of medium and long duration fingermillet, transplanting chilli, cowpea, horsegram, fodder crops (maize, pearlmillet, sorghum)

First fortnight of September
• Monocropping: Horsegram, transplanting of short duration fingermillet and chilli (with protective irrigation)
• Sequence cropping: Horsegram, transplanting of short duration fingermillet and chilli (with protective irrigation)

Alternate/ contingency crop production practices for drought mitigation:
• Dry seeding in fingermillet, sorghum, pigeonpea and castor when monsoon is delayed. For crops with big seeds and less seed rate, like pigeonpea, pelletisation of seed is to be done before dry sowing.
• Maintain optimum plant population by thinning.
• Repeated inter cultivation coupled with weeding and weed mulching.
• Preventive measures against pests and diseases.
• Double split top dressing.
• Controlled grazing by animals to reduce excess vegetative growth and to minimize transpiration in fingermillet and horsegram
Soil and water conservation

Mysore

- **In-situ conservation practices:**
 - Opening a conservation furrow in between the paired rows in pigeonpea and maize for better moisture conservation.
 - Opening furrows on 0.2 to 0.4 slope
 - Graded ridge and furrows are made on 0.2 to 0.4 per cent grade for better conservation of moisture as well as safe disposal for cultivation of maize.
 - Conservation furrows at 3.3 m interval
 - Fall ploughing to a depth of 15-30 cm. for better infiltration of rainwater during onset of rains.
 - Summer tillage
 - Deep tillage to a depth of 25-30 cm. using mould board plough to reduce the weed incidence and increase soil moisture storage for sunflower and maize crops.
 - Cultivation across the slope with vetiver/ pennisetum grass as live barrier at 0.5 m vertical interval to check the velocity of runoff and better moisture conservation and availability for a longer period for fingermillet/groundnut/maize/sunflower crops.
 - More emphasis on in situ water conservation
 - Reducing soil crusting problem
 - Farm pond size of 250 m³ plastered both sides and bottom with cement + sandy clay soils (1:8)
 - The existing bund itself could be modified to act as graded bund by internal land smoothening open end contour bunds (0.8 m²) or graded bunds (0.36 m²) on a slope of 0.2 to 0.4%. Waterways are viable with outlets.
 - Developing deeper soil (<45 cm) in to graded border strips of 10-12 m width on a gradient of 0.2 to 0.4
percent along the length

- Alleviation of crust is possible with the addition of FYM 10 t/ha, maize residue 5 t/ha and sand 25 t/ha

- **Long term conservation practices:**

 - Construction of contour bunds with a cross section of 0.54 m² to control and conserve runoff.
 - Construction of Graded bunds by providing 0.2 to 0.4 per cent grade with a cross section of 0.36 m² for safe disposal of excess runoff.
 - Graded borderer strips with a gradient of 0.1 to 0.5 per cent to fit into the local topography and hydrographic features.
 - Broad based bunds of 1.5 m² cross-sections on contour with 1 m vertical interval for better rainwater conservation.
 - Reduced contour bunds (0.36 m²) in combination with vegetative live barriers for effective conservation of rainwater in low rainfall areas (< 600 mm)

Shimoga

- Sowing across the slope and ridging later
- Contour farming (cultivation and sowing along contour)
- Compartmental bunds

Crop management

 - Indaf – 8 for early in July
 - GPU – 28, PR – 202 for early August sowing
 - GPU – 26, Indaf – 9 for late sowing
- **Seed rate:** 10 kg/ha
- **Planting pattern:** 30 x 7.5 cm / 22.5 cm x 10.0 cm. Spacing is same for drilling and transplanting
- **Nutrient management:** FYM 10 t/ha + 50 kg N + 50 kg P₂O₅ + 25 kg K₂O /ha. N in 2 equal splits, 1/3 at sowing or drilling and remaining 1/2 at tillering initiation; P and K basal placement
- **Some other important practices**
 - August sowing – short duration fingermillet, transplanted fingermillet 10-12 cm depth – ploughing
 - For establishing fingermillet in July – seed drilling is to be done
 - For late establishment – Transplanting the seedlings is essential

Suitable cropping systems

- Cowpea- fingermillet
- Greengram- fingermillet
- Blackgram - fingermillet
- Sorghum – transplanted fingermillet
- Pigeonpea paired rows-fingermillet (10:2)
• Fingermillet-field bean
• Fingermillet + pigeonpea (10:2) with conservation furrow between pigeonpea rows
• Fingermillet + soybean (1:1)
• Paired rows of pigeonpea followed by 8 rows of fingermillet with a furrow between pigeonpea. Planting of pigeonpea in May and fingermillet in July.

Farm implements/ tools
• Bullock drawn seed-sum-fertilizer drill (fingermillet): Bullock drawn manual operation for fingermillet seeding and fertilizer application (Hand metered) (Rs. 1500/- per unit)
• Multifurrow opener: Opening furrows for hand seeding of different crops (Rs. 1300/- per unit)
• Bent Tyne hoe: Intercultural operation for finger millet (Rs. 350/- per unit)
• Duck foot hoe: Intercultural operation for finger millet and groundnut for moisture conservation (Hand metered) (Rs. 350/- per unit)
• Crust Breaker: For breaking the crust to facilitate smooth emergence of the seedling in finger millet and groundnut (Rs. 500/- per unit)
• For opening furrows at 3.3 m interval simultaneously with sowing the seeds of finger millet, the newly designed seed drill with furrow opener is a convenient implement.
• Five coultered, 30 cm row spaced finger millet seed-cum-fertilizer drills should be used for sowing finger millet.

Alternate farming systems

Mysore
• Fodder/ green biomass: *Casuarina* and silver oak are better suited than other three species like eucalyptus, *azadirachta indica*, *Leucaena*, *Acacia* etc.
 Faidherbia albida is more suitable for planting on bunds (E-W direction) in micro-watershed.
 Stylisanthes hamata is most suitable. *Stylisanthes scabra* should be adopted for gravelly shallow soils with low rainfall.

 Acacia auriculiformis, *Cassia siamea*, *Dalbergia sissoo*, subabul and amla are more suitable and promising than other deep-rooted high water intensive tree species under high gradient non-arable lands with shallow soils and rock out crops. For better establishment, trench method of planting is better than pit method.

 Bamboo, jambulina, pongamia, *azadirachta indica*, *Albizzia lebbeck*, peepal, and ficus species can be planted in the catch pits and pockets of deep soil.

 Grasses like *Pennisetum pedicellatum or Cenchrus ciliaris* and legumes like *Microtelium axillaries* are suitable forage species.

 Leucaena leucocephala, *Albizzia lebbeck*, *Dalbergia sissoo*, *Azadiracta indica*, *Pongamia*, *Cassia siamea*

• Fruit: *In-situ* grafting/ budding of fruits trees like mango and ber found to be more economical than using grafted plants. Custured apple, Jack and tamarind were other species suitable to wastelands.
 Mango, Phylanthus and jambulina performed better in the non-arable land.
Mango, Pomegranate, Sapota, Guava, Custard apple, Jamun

- **Medicinal and aromatic plants:** Catharanthus roseus, Cassia angustifolia, Solanum viarum, Dioscorea, Geranium, Pogostemon patchouli, Jasmine
- **Vegetables:** Tomato, chillies, okra, watermelon, bitter gourd, Drumstick, Brinjal.
- **Animal component:** Female and male cattle, female buffaloes, Sheep
- **Other enterprises:** Sericulture, goat rearing, rabbit rearing, Piggery

Shimoga

- **Fodder/green biomass:** H.binata, Albizia lebbeck, Leucaena leucocephala, Delbeusion sissoo, Azadiracta indica.
- **Fruit:** Mango, sapota, pomegranate, fig and guava
- **Medicinal and aromatic plants:** Vetiveria zyzanoides, Palma rosa, Cassia angustifolia, Catharanthus roseus
- **Vegetables:** Tomato, chillies, brinjal, amaranthus, bitter gourd
- **Animal component:** Female and male cattle, female buffaloes, goat, sheep, poultry.

Contingent planning

Mysore

- **Second fortnight of April**
 - Double cropping: Sesame or greengram or sunflower or sorghum
- **First fortnight of May**
 - Monocropping: Pigeonpea
 - Sequence cropping: Sesame, cowpea, greengram, blackgram, fodder maize, fodder pearl millet, fodder sorghum.
- **Second fortnight of May**
 - Monocropping: Pigeonpea
 - Sequence cropping: Sesame, cowpea, greengram, blackgram, fodder maize, fodder pearl millet, fodder sorghum.
- **First fortnight of June**
 - Monocropping: Long duration fingermillet, pigeonpea, maize, groundnut
 - Sequence cropping: Fodder maize, fodder sorghum, fodder pearl millet, cowpea
- **Second fortnight of June**
 - Monocropping: Long duration fingermillet, pigeonpea, maize and groundnut
 - Sequence cropping: Sowing of chilli nursery
- **First fortnight of July**
 - Monocropping: Groundnut, long duration fingermillet
 - Sequence cropping: Sowing of chilli nursery
• Second fortnight of July
 • Monocropping: Groundnut, long/medium duration finger millet
 • Sequence cropping: Sowing of chilli nursery

• First fortnight of August
 • Monocropping: Cowpea, horsegram, short duration finger millet, transplanting chilli
 • Sequence cropping: Cowpea, horsegram, short duration finger millet, transplanting chilli.
 • Sowing of chilli nursery and short duration finger millet.

• Second fortnight of August
 • Monocropping: Short duration finger millet, transplanting of medium and long duration finger millet, transplanting chilli, cowpea, horsegram
 • Sequence cropping: Short duration finger millet, transplanting of medium and long duration finger millet, transplanting chilli, cowpea, horsegram, fodder crops (maize, pearl millet, sorghum)

• First fortnight of September
 • Monocropping: Horsegram, transplanting of short duration finger millet and chilli (with protective irrigation)
 • Sequence cropping: Horsegram, transplanting of short duration finger millet and chilli (with protective irrigation)

Alternate/contingency crop production practices for drought mitigation

Mysore
• Dry sowing in finger millet, sorghum, maize, pigeonpea, groundnut and castor when monsoon is delayed. For crops with big seeds and less seed rate, like pigeonpea, pelletisation of seed is to be done before dry sowing.
• Maintain optimum plant population by thinning.
• Repeated inter-cultivation coupled with weeding and weed mulching.
• Preventive measures against pests and diseases.
• Double split top dressing.
• Controlled grazing by animals to reduce excess vegetative growth to prevent transpiration in finger millet and horsegram.
MAHARASHTRA

In Maharashtra there is one district Kolhapur under medium runoff and medium yield gap region and two districts viz. Nasik and Pune under low runoff and medium yield gap region. The trends in area, production and productivity of finger millet in Maharashtra (1980 - 2005) are shown in Fig. 24.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maharashtra</td>
<td>Kolhapur</td>
<td>Medium runoff and Medium yield gap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Kolhapur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot dry sub humid/ Hot moist sub humid to humid (transitional)</td>
</tr>
<tr>
<td>Physiography</td>
<td>North Sahyadries</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertisols – 50%; Vertic soils – 50%</td>
</tr>
<tr>
<td></td>
<td>Shallow and medium loamy and clayey black soils, deep clayey black soils, Deep loamy to clayey red and lateritic soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1137</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1636</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>180 - 210</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Tied ridging
- Compartmental bunding
- Ridges and furrows prior to sowing
- Marvel –8 grass on bunds for protection of bunds
- Contour live bunds of Marvel-8 or Leucaena
- Leucaena lopping mulch at 3.5 t/ha

Farm implements/ tools

- Bullock drawn tow bowl ferti-seed-drill
- Bullock-drawn two row seed-cum fertilizer drill
- Bullock-drawn Shivaji multi-purpose farming machine (3 rows)
- Two bowl seed and fertilizer drill

Alternate farming systems

- **Fodder/green biomass:** Stylo in initial 1-2 years of main crop cultivation of Marvel-8 grass on bunds for protection of bunds and for fodder.
 - Contour live bunds of Marvel-8 of Leucaena.

 Delbergia sissoo, M.azadirachta, Albizzia lebbeck, Anogeissus latifolia, Sesbania, A. excelsa, Cassia siamea
Fig. 24. Trends in Area, Production and Productivity of Finger millet in Maharashtra (1980-2005)
All India Coordinated Research Project for Dryland Agriculture (AICRPDA)

- **Fruit:** Ber, amla with intercropping of *Kharif* (spreading) crops. Pomegranate, mango, sapota, custard apple, fig, jamun
- **Medicinal and aromatic plants:** *Catharanthus roseus, Palma rosa, Vetiveria zyzanoides, Rose, Geranium*
- **Vegetables:** Onion, tomato, okra, cowpea, cluster bean, drumstick
- **Animal component:** Female and male cattle, female buffaloes, goat, sheep and poultry

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maharashtra</td>
<td>Nasik</td>
<td>Low runoff and Medium yield gap</td>
</tr>
<tr>
<td>Pune</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Nasik</th>
<th>Pune</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot semi arid</td>
<td>Hot semi arid/ Hot dry sub humid/ Hot humid</td>
</tr>
<tr>
<td>Physiography</td>
<td>Western Maharashtra Plateau</td>
<td>North Sahayadris</td>
</tr>
<tr>
<td>Soils</td>
<td>Vertic soils – 85%; Vertisols – 15%</td>
<td>Vertic soils – 65%; Vertisols – 35%</td>
</tr>
<tr>
<td></td>
<td>Shallow and Medium loamy, medium and deep clayey black soils</td>
<td>Shallow and Medium loamy, medium and deep clayey black soils, Shallow and medium loamy and clayey black soils, deep clayey black soils, Medium to deep loamy to clayey mixed red and black soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>591</td>
<td>715</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1659</td>
<td>1476</td>
</tr>
<tr>
<td>Length of growing period (LGP) / moisture availability period (days)</td>
<td>120-150</td>
<td>90-120 / 150-180 / 210-240</td>
</tr>
</tbody>
</table>

Soil and water conservation
- Compartmental bunding
- Ridges and furrows prior to sowing
- Marvel –8 grass on bunds for protection of bunds
- Contour live bunds of Marvel-8 or *Leucaena*
 - *Leucaena* lopping mulch at 3.5 t/ha

Farm implements/ tools
- Bullock drawn tow bowl ferti-seed-drill
- Bullock-drawn two row seed-cum fertilizer drill
- Bullock-drawn Shivaji multi-purpose farming machine (3 rows)
- Two bowl seed cum fertilizer drill
Alternate farming systems

- **Fodder/green biomass**: Stylo in initial 1-2 years of main crop

 Cultivation of Marvel-8 grass on bunds for protection of bunds and for fodder.

 Contour live bunds of Marvel - 8 of *Leucaena, Delbergia sissoo, M. azadirachta, Albizzia lebbeck, Anogeissus latifolia, Sesbania, A. excelsa, Cassia siamea*

- **Fruit**: Ber, Amla with intercropping of *Kharif* (spreading) crops.

 Pomegranate, mango, sapota, custard apple, fig, jamun

- **Medicinal and aromatic plants**: *Catharanthus roseus, Palma rosa, Vetiveria zyzanoides, Rose, Geranium.*

- **Vegetables**: Onion, tomato, okra, cowpea, cluster bean, drumstick

- **Animal Component**: Female and male cattle, female buffaloes, goat, sheep and poultry.
ORISSA

In Orissa there are three districts viz Ganjam, Kalhandi and Koraput under medium runoff and medium yield gap region. The trends in area, production and productivity of finger millet in Orissa (1980 - 2005) are shown in Fig. 25.

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orissa</td>
<td>Ganjam</td>
<td>Medium runoff and Medium yield gap</td>
</tr>
<tr>
<td></td>
<td>Kalahandi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Koraput</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agro-geographic setting</th>
<th>Ganjam</th>
<th>Kalahandi</th>
<th>Koraput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Hot (moist/ dry) sub humid/ Hot dry sub humid</td>
<td>Hot moist sub humid</td>
<td>Hot moist sub humid</td>
</tr>
<tr>
<td>Physiography</td>
<td>Eastern ghats</td>
<td>Eastern ghats</td>
<td>Eastern ghats</td>
</tr>
<tr>
<td>Soils</td>
<td>Orthids – 40%; Sandy Alfisol – 60%</td>
<td>Ustalf/ Ustolls – 70%; Loamy Alfisol – 30%</td>
<td>Loamy Alfisol – 80%; Sandy Alfisol – 20%</td>
</tr>
<tr>
<td></td>
<td>Medium to deep loamy red and lateritic, deep loamy to clayey coastal and Deltaic Alluvium derived soils, Deep loamy to clayey coastal and deltaic alluvium - derived soils</td>
<td>Deep loamy red and lateritic soils</td>
<td>Deep loamy red and lateritic soils</td>
</tr>
<tr>
<td>Annual rainfall (mm)</td>
<td>1311</td>
<td>1511</td>
<td>1671</td>
</tr>
<tr>
<td>Potential evapotranspiration (mm)</td>
<td>1662</td>
<td>1524</td>
<td>1630</td>
</tr>
<tr>
<td>Length of growing period (LGP)/ moisture availability period (days)</td>
<td>180-210</td>
<td>180-210</td>
<td>180-120</td>
</tr>
</tbody>
</table>

Soil and water conservation

- Bench terracing
- Compartmental bunding
- Graded border strips
- Sowing across the slope and ridging later
- **Insitu** conservation of soil moisture

Crop management

- **Varieties:** Dibyasinha, Nilachala, Bhairabi, OEB - 10; BM 9 - 1; GPU - 45; OUAT - 2; AKP - 2.
- **Seed rate:** Direct sown : 10 kg /ha
 - Transplanted: 6 kg /ha
- **Planting pattern:** Direct sown : 22.5 x 10 cm rows
 - Transplanted: 22.5 x 10 cm
Fig. 25. Trends in Area, Production and Productivity of Fingermillet in Orissa (1980-2005)
Nutrient management: 40 kg N + 20 kg P₂O₅ + 20 kg K₂O/ha. Apply all P and K and 50% N as basal and 50% N at 21 days after sowing.

Suitable cropping systems

- Pigeonpea (T-21, R-60) + finger millet (Dibyasingha)
- Four rows of short duration, short statured finger millet in 20 cm apart rows are intercropped in 100 cm inter space between paired rows of pigeonpea with set specification 30-100-30 cm.
- Finger millet + Pigeonpea – 8:2 proportion.

Farm implements/tools

- Hand Hoe

Alternate farming system

- Non-arable wastelands
 - Tree farming (Sal, Teak)
 - Silvi-pastoral (Shisham/Subabul/Gambar + Stylo/Cenchrus/mixture)
- Arable lands
 - Agri-horticulture: Fruit crops (mango/ citrus/ sapota/ pomegranate/ custard apple/aonla/ litchi/ jackfruit/ phalsa) + field crops (pulses/ oilseeds). Hybrid mango varieties viz. Pusa Amrapalli and Pusa Mallika are becoming increasingly popular in the zone.
 - Sweet potato + maize/ castor (spacing 80 x 25 cm)
 - Yam (100 x 60 cm) + maize/ castor
 - Tapioca (100 x 100 cm) + maize / castor
 - Colocassia (980 x 25 cm) + maize / castor
 - Alley cropping: Leucaena + turmeric/ ginger
 - Subabul (4 m interval) + groundnut/ sesame/ cowpea (grain)
- Fodder/green biomass: P.pinnata, Albizzia sps, Cassia siamea, Grevellea robusta, D. sissoo, Azadirachta indica.
- Fruit: Mango, jackfruit, guava, lime
- Medicinal and aromatic plants: Vetiveria zyzanoides, Cymbopogon flexuosus, Palmarosa, Solanum viarum, Cinnamon, Citronella, java
- Vegetables: Bottle gourd, brinjal, ridge gourd, watermelon, long melon, bitter gourd, tomato
- Animal component: Female and male cattle, goat

Contingent planning

- Normal season:
- Rice:
 - Very early group (less than 95 days): Heera, Rudra, ZHU 11-26, Vandana
Districtwise Promising Technologies for Rainfed Cereals based Production System in India

- Early group (95 days to 115 days): Pathara, Khandagiri, Udayagiri, Ghanteswari and Parijat
- Early medium (115 days to 120 days): Sarathi and Bhoi
- Medium duration (125 to 145 days): Lalat, IR-64, Konark, Gajapati, Surendra, Jajati, Swarna, MTU-1001 and Padmini
- Late duration: Utkalaprava, Gayatri, Savitri, Prachi, Ramachani, Mahanadi and Indrabati
- **Maize**: Navjot, Vijaya, DHM-103 and Ganga-5
- **Greengram**: PDM-54, K-851, Dhauli and TARM-2
- **Blackgram**: Pant U-30, T-9 and Sarala
- **Pigeonpea**: UPAS-120, R-60, T-21 and S-5
- **Cowpea**: SEB-2, SGL-1 and Arka Kamal
- **Horse gram**: Urmi and Local
- **Groundnut**: Smruti (OG 52-1), JL-24, ICGS-11 and AK 12-24
- **Castor**: Aruna, DCH-177 and DCH-30
- **Rapeseed mustard**: PT-303, M-27, Parvati and Anuradha
- **Sesame**: Vinayak, Uma, Usha and Prachi
- **Niger**: Deomali (GA-10), IGP-76 and Phulbani Local
- **Linseed**: Kiran, Laxmi-27, Pusa-3 and Padmini
- **Sunflower**: Morden
- **Cotton**: MCU-5, NHH-44, Somanath, Savita and Bunny
- **Ginger**: Vardhan, China and Nadia
- **Turmeric**: Sudarsan, Suguna, Subarna and Rajendra Horti-5.
- **Yam**: Hatikhoja, Srikirti and Srirupa

Aberrant weather

Upland

- **Early season drought/Delay in onset of monsoon**

 When upland rice is completely damaged, the crop may be cut to the bottom for supplying straw to the cattle. Non-paddy crops viz. fingermillet (Subhra, Bhairabi, Dibyasingha and Godavari), greengram (K 851, PDM-11 and PDM-54), blackgram (T-9, Sarala and Pant U-30), cowpea (SEB-2, SGL-1, Arka Kamal), horsegram (Urmi), ricebean (RBL - 6), sesame (Usha, Uma) and castor (Aruna, DCS-9), niger (IGP-76 and Deomali) or sunflower (Morden) should be taken. Drought tolerant varieties of crop(s)/ cropping system(s) should be taken up. The crop variety should be selected based on available effective growing season.

- **Mid-season drought**

 Weeding and hoeing should be done in all the crops except groundnut in flowering stage. Weeds in groundnut should be cut or uprooted not to interfere in pegging and pod formation. Hoeing creates soil mulch and decreases moisture loss from the soil. Uprooted weeds should be used as mulch between crop rows.
• Foliar spraying of 2% urea in upland rice and finger millet gives good results. For this, 200 g of urea is mixed with 10 litre of water and sprayed on the foliage of the crop. Plant protection chemicals may be mixed with urea solution to minimize the cost of spraying. In a single spray 10 kg/ha of urea is applied through 500 litre solution.

• Excess plants in the crop row should be thinned to reduce moisture loss from the soil.

• Use of tender twigs of *Leucaena, Glyricidia sepium, Cassia siamea* and *Mimosa invisa* and plants of sunhemp as mulch-cum-manure reduces evaporation loss from the soil.

• Spraying of planofix 10 ppm at 45 days after sowing and 20 ppm at flowering in cotton to prevent fruit drop.

Late season drought: Harvested rainwater should be recycled as life saving irrigation.

Medium and low land

Direct sown rice:

• Re-sowing of rice is needed if plant population is less than 50%. Line sowing of pre-germinated seeds of rice (125 days duration) should be done. Nursery for comparatively shorter duration rice varieties may be done.

• If plant population is more than 50% and *beushening* is not possible, weeds are uprooted by manual means. Even distribution of plants (*Khelua*) should be taken up immediately by using local tools. Tillers with roots may be detached from hills with profuse tillering for planting in gappy areas. Urea solution (2%) may be sprayed to improve crop growth.

Transplanted rice

• If puddling and transplanting is not possible, seedlings should not be uprooted. Weeds are removed to keep the nursery beds clean. Adequate plant protection measures are taken to protect the seedlings from disease and pest attack.

• When rainfall occurs, tractor drawn power tiller or rotovator for better puddling does. Close planting of 45-day old seedlings in case of medium duration varieties and 60-70 day old seedlings in late varieties should be done. There should be 60-65 hills/m². Instead of 2 to 3 seedlings, 4 to 5 seedlings/ hill should be planted. Adequate fertilizer should be applied at transplanting.

• When seedlings are insufficient, seedlings may be raised by Dapog method.
Districtwise Promising Technologies for Rainfed Cereals based Production System in India

Prioritized management options are:

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>Management options</th>
<th>Average Yield (kg/ha)</th>
<th>Expected Yield with adoption (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>Mahbubnagar, Vishakhapatnam</td>
<td>High yield cultivars, pest and disease management packages, improved management practices along with \textit{in situ} water management activities.</td>
<td>876</td>
<td>1000 to 1050</td>
</tr>
<tr>
<td>Karnataka</td>
<td>Mandya</td>
<td>High yield cultivars, pest and disease management packages, improved management practices along with \textit{in situ} water management activities.</td>
<td>876</td>
<td>1000 to 1050</td>
</tr>
<tr>
<td>Kolar</td>
<td></td>
<td>Improved management practices along with \textit{in situ} water management activities.</td>
<td>1629</td>
<td>1800 to 1900</td>
</tr>
<tr>
<td>Mysore, Shimoga</td>
<td></td>
<td>Improved management practices along with \textit{in situ} water management activities, pest and disease management packages, water harvesting for supplemental irrigation and to raise a successful second crop.</td>
<td>1265</td>
<td>1450 to 1550</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>Nasik, Pune</td>
<td>High yield cultivars, pest and disease management packages, improved management practices along with \textit{in situ} water management activities.</td>
<td>876</td>
<td>1000 to 1050</td>
</tr>
<tr>
<td>Kolhapur</td>
<td></td>
<td>Improved management practices along with \textit{in situ} water management activities, pest and disease management packages, water harvesting for supplemental irrigation and to raise a successful second crop.</td>
<td>1265</td>
<td>1450 to 1550</td>
</tr>
<tr>
<td>Orissa</td>
<td>Ganjam, Kalahandi</td>
<td>Cultivation could be limited to uplands only high yield cultivars, improved management packages, water harvesting for efficient utilisation of available water</td>
<td>774</td>
<td>900 to 950</td>
</tr>
<tr>
<td></td>
<td>Koraput</td>
<td>Cultivation could be limited to uplands only high yield cultivars, improved management packages, water harvesting for efficient utilisation of available water</td>
<td>977</td>
<td>1150 to 1200</td>
</tr>
</tbody>
</table>
POPULAR AND BOTANICAL NAMES OF SOME RAINFED CROPS

<table>
<thead>
<tr>
<th>Crop Name</th>
<th>Botanical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arhar (Redgram)</td>
<td>Cajanus cajan (L.) Millsp.</td>
</tr>
<tr>
<td>Bajra (Pearlmillet)</td>
<td>Pennisetum americanum (L.) Leeke</td>
</tr>
<tr>
<td>Barley</td>
<td>Hordeum vulgare L.</td>
</tr>
<tr>
<td>Bengalgram (Gram; Chickpea)</td>
<td>Cicer arietinum L.</td>
</tr>
<tr>
<td>Blackgram (Urd)</td>
<td>Vigna mungs (L.) Hepper</td>
</tr>
<tr>
<td>Blue panic</td>
<td>Panicum antidotale</td>
</tr>
<tr>
<td>Castor</td>
<td>Ricinus communis L.</td>
</tr>
<tr>
<td>Chilli</td>
<td>Capsicum frutescens L.</td>
</tr>
<tr>
<td>Clusterbean (Guar)</td>
<td>Cyamopsis tetragonolobus (L.) Taub</td>
</tr>
<tr>
<td>Coriander</td>
<td>Coriandrum sativum L.</td>
</tr>
<tr>
<td>Cowpea</td>
<td>Vigna unguiculata (L.) Walp</td>
</tr>
<tr>
<td>Fingermillet (Ragi)</td>
<td>Eleusine coracana (L.) Gaertn</td>
</tr>
<tr>
<td>Foxtail millet (Setaria, Italian millet)</td>
<td>Setaria italica Beauv</td>
</tr>
<tr>
<td>Gingelly (Sesamum, Sesame, Til)</td>
<td>Sesamum indicum L.</td>
</tr>
<tr>
<td>Gram (Bengalgram)</td>
<td>Cicer arietinum L.</td>
</tr>
<tr>
<td>Greengram (Moong)</td>
<td>Vigna radiata (L.) Wilczek</td>
</tr>
<tr>
<td>Groundnut (Peanut)</td>
<td>Arachis hypogaea L.</td>
</tr>
<tr>
<td>Guar (Cluster bean)</td>
<td>Cyamopsis tetragonolobus (L.) Tabu</td>
</tr>
<tr>
<td>Horsegram</td>
<td>Macrotyloma uniflorum (Lam.) Verdc</td>
</tr>
<tr>
<td>Hybrid Napier</td>
<td>Pennisetum purpureum x P. typhoides) F1</td>
</tr>
<tr>
<td>Indian bean (Lablab)</td>
<td>Lablab purpureus (L) Sweet</td>
</tr>
<tr>
<td>Indian rape (Toria)</td>
<td>Brassica campestris L.</td>
</tr>
<tr>
<td>Indian squash melon (Tinda)</td>
<td>Citrus fistulosus</td>
</tr>
<tr>
<td>Italian millet (Foxtail millet, Setaria)</td>
<td>Setaria italica Beauv</td>
</tr>
<tr>
<td>Jowar (Sorghum)</td>
<td>Sorghum bicolor (L.) Moench</td>
</tr>
<tr>
<td>Jute</td>
<td>Corchorus capsularis L.</td>
</tr>
<tr>
<td>Kabuli gram</td>
<td>Cicer arietinum L.</td>
</tr>
<tr>
<td>Lentil (Masoor)</td>
<td>Lens culinaris Medic</td>
</tr>
<tr>
<td>Maize</td>
<td>Zea mays L.</td>
</tr>
<tr>
<td>Mesta (Rozella)</td>
<td>Hibiscus Sabdariffa L.</td>
</tr>
<tr>
<td>Moth (dew gram)</td>
<td>Vigna aconitifolia (Jacq.) Marechal</td>
</tr>
<tr>
<td>Mustard (Raya)</td>
<td>Brassica juncea Coss.</td>
</tr>
<tr>
<td>Crop Name</td>
<td>Scientific Name</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Napier Grass</td>
<td>Pennisetum purpureum</td>
</tr>
<tr>
<td>Niger</td>
<td>Guizotia abyssinica (L.f.) Cass</td>
</tr>
<tr>
<td>Paddy (Rice)</td>
<td>Oryza sativa L.</td>
</tr>
<tr>
<td>Peanut (Groundnut)</td>
<td>Arachis hypogaea L.</td>
</tr>
<tr>
<td>Pearl millet (Bajra)</td>
<td>Pennisetum americanum (L.) Leeke</td>
</tr>
<tr>
<td>Peas</td>
<td>Pisum sativum L.</td>
</tr>
<tr>
<td>Pigeonpea (Arhar, Redgram, Tur)</td>
<td>Cajanus cajan (L.) Millsp.</td>
</tr>
<tr>
<td>Potato</td>
<td>Solanum tuberosum L.</td>
</tr>
<tr>
<td>Proso millet</td>
<td>Panicum miliaceum L.</td>
</tr>
<tr>
<td>Ragi</td>
<td>Eleusine coracana (L.) Gaertn</td>
</tr>
<tr>
<td>Rapeseed (Sarson)</td>
<td>Brassica campestris var. Sarson Prain</td>
</tr>
<tr>
<td>Raya (Mustard)</td>
<td>Brassica juncea (L.) Czern. & Coss</td>
</tr>
<tr>
<td>Redgram (Pigeonpea, Arhar, Tur)</td>
<td>Cajanus cajan (L.) Millsp.</td>
</tr>
<tr>
<td>Rice (Paddy)</td>
<td>Oryza sativa L.</td>
</tr>
<tr>
<td>Rozella (Mesta)</td>
<td>Hibiscus sabdariffa L.</td>
</tr>
<tr>
<td>Safflower</td>
<td>Carthamus tinctorius L.</td>
</tr>
<tr>
<td>Sarson (Rapeseed)</td>
<td>Brassica campestris var. Sarson Prain</td>
</tr>
<tr>
<td>Sesame (Sesamum, Gingelly, Til)</td>
<td>Sesamum indicum L.</td>
</tr>
<tr>
<td>Setaria (Foxtail millet, Italian millet)</td>
<td>Setaria italica Beauv</td>
</tr>
<tr>
<td>Siratro</td>
<td>Macroptilium purpureum L.</td>
</tr>
<tr>
<td>Sorghum</td>
<td>Sorghum bicolor (L.) Moench</td>
</tr>
<tr>
<td>Soyabean or Soybean</td>
<td>Glycine max (L.) Merr</td>
</tr>
<tr>
<td>Sunflower</td>
<td>Helianthus annuus L.</td>
</tr>
<tr>
<td>Sweet Potato</td>
<td>Ipomea batatas (L.) Lam</td>
</tr>
<tr>
<td>Taramira (Rocket salad)</td>
<td>Eruca sativa Mill</td>
</tr>
<tr>
<td>Til (Gingelly, Sesamum, Sesame)</td>
<td>Sesamum indicum L.</td>
</tr>
<tr>
<td>Tinda (Indian Squash Melon)</td>
<td>Citrus fistulosus</td>
</tr>
<tr>
<td>Tobacco</td>
<td>Nicotiana tabacum L.</td>
</tr>
<tr>
<td>Toria (Indian rape)</td>
<td>Brassica campestris var toria Duthie & Fuller</td>
</tr>
<tr>
<td>Tur (Redgram, Pigeonpea, Arhar)</td>
<td>Cajanus cajan (L.) Millsp.</td>
</tr>
<tr>
<td>Triticale</td>
<td>Triticale officinale</td>
</tr>
<tr>
<td>Urd (Blackgram)</td>
<td>Vigna mungo (L.) Hepper</td>
</tr>
</tbody>
</table>
GENERIC AND BRAND NAMES OF SOME PESTICIDES

Herbicides/ Weedicides

ALACHLOR 10G, 50% EC: Lasso (Monsanto), Alataf (Rallis)

ANILOPHOS 30% EC: Aerozin (Agr. Evo), Sumo (Dupont), Glyphotox (AIMCO), Ricil (De’Nocil), Anilostar (Shaw Wallance), Aniloguard (Gharda)

ATRAZINE 50% W.P.: Atrataf (Rallis), Solaro (Pesticides Inida), Dhanusine (Dhanuka)

BENTHIQCARB/ THIOBENCARB 50% EC & 10% Gr: Saturn (Pesticides India), Thiobencarb (Tropical Agro)

BUTACHLOR 50 EC, 5 GR.: Machete (Monsanto), Teer (Rallis), Milchlor (Montari), Wid Kil (Sudarshan Chemicals), Aimchlor (AMICO), Nirmool (Lupin), Starchlor (Shaw Wallace), Dhanuchlor (Dhanuka), Speclor (Southern Pesticides), Hiltachlor (Hindustan Insecticides), Trapp (Searle India), Delchlor (Coromandel Indag), Bilchlor (Bayer)

DIURON 80%: Karmex (Agromore), Mermer, Hexuron (Parry Chemicals)

FLUCHLORALIN 45%: Basalin (BASF)

ISOPROTURON 75%, 50% W.P.: Nocilon (De Nocil), Rakshak (Lupin), Milron (Montari), Dhanuron (Dhanuka), Hilproturan (Hindustan Insecticides), Arelon (Agr Evo), Graminon (Novartis), Bifron (Bayer)

METALACHLOR 50% EC: Duel (Novartis)

NITROFEN 8 G, 25%, 24%: Tok-E-25 (Indofil)

OXADIAZON 25% EC: Ronstar (Rhone-Poulenc)

FLUXFLOURFEN 23.5%, 0.35 Gr: Goal (Bayer), Oxygold (Indofil)

PENDIMETHALIN 20 & 30% EC, 5% Gr: Stomp (Cyanamid Agro), Panida (Rallis)

SIMAZINE 50%: Tafazine (Rallis), Gesatop, Hexazine (Parry Chemicals)

TRIFLURALIN 48%: Treflan (De’Nocil), Triflurex (Parry Chemicals)

Insecticides

ALDICARB: Temic 10 G (Rhone Poulenc)

CARBARYL: 5% DUST; 10% DUST; 4 G; 50% WP: Parryvin 50 WP (E.I.D. Parry), Dhanuvin 50 WP (Dhanuka), Killex Carbaryl (Paushak), Hexavin (Parry Chemicals), Kildiryl (Kilpest), Agroryl (Gujarat Agro), Sevin Flo 42%, Sevin 50% WP, Sevin D, Sevidol 4:4G, Sevin 4G (Rhone Poulenc)

Carbofuran 3 G, 50% SP: Furadan 3G (Rallis), Furacarb (AIMCO), Carbocil 3G (De’Nocil), Diafuran 3G (Pesticides India), Fury (NFCL), Hexafuran (Parry Chemicals), Furatox (AIMCO), Agroduran (Gujarat Agro)

CARBOSULPHAN 25% DS: Marshal (Rallis)

CHLORPYRIFOS 20 EC, 10 G, 1.5 DP: Coroban (Coromandal Indag), Blaze (Indofil), Dursban, Ruban (De’Nocil), Sulban (Sulphur Mill), Specphos 20 (Southern Pesticides), Hyban (Hyderabad Chemicals), Radar (Searle India), Nuklor 20EC (Dupont), Corocin (OCL), Scout (AIMCO), Dhanwan 20 (Dhanuka), Durmet 20EC (Cyanamid Agro), Classic (Lupin), Starban (Shaw Wallace), Doomer (Bhaskar Agro), Hilban (Hindustan Insecticides), Tagban 20 EC (Tropical Agro), Cyphos (ICI-Zenica), Tarkash (BASF), Force (NFCL), Pyrivol (Voltas), Hexaban (Parry Chemicals), Agro-Chlore (Gujarat Agro), Chloroguard (Gharda), Tafaban (Rallis), Strike (Wockhardt), Robust (Sabero)
CYPERMETHRIN 10 EC: Ralothrin (Rallis), Ankush (BASF), Simper (ICI-Zeneca), Hi-Power (Sulphur Mills), Spec Cyperin (Southern Pesticides), Hycyper (Hyderabad Chemicals), Cyper Top (Thakar Chemicals), Lacer (Searle India), Agro-Cyper (Gujarat Agro), Jawa (Dupont), Cypercin (IOCL), Super Killer (Dhanuka), Cypermil (Montari), Polytrin (Novartis), Cypropid (AIMCO), Challanger (Tripical Agro), Ciclor, (De’Nocil), Starcip (Shaw Wallace), Volcyper (Voltas), Cypermarp (Pary Chemicals), Hilcyperin (Hindustan Insecticides).

CYPERMETHRIN 25 EC: Cymbush (ICI-Zeneca), Ralothrin (Rallis), Cypermul (Sulphur Mills) Spec Cyperin (SPEC), Angel (Hyderabad Chemicals), Cyper Top (Thakar Chemicals), Trofy 25 EC (Searle India), Cypercin (IOCL), Challanger (Tropical Agro), Cypermil (Montari), Cyperguard (Gharda Chemicals), Polytrin (Novartis), Cypropid (AIMCO), Ciclor (De’Nocil), Colt-25 (Pesticides India), Volcyper (Voltas), Shakti (Lupin), Basathrin (BASF), Hilcyperin (Hindustan Insecticides), Cybil (Bayer), Cyrex (United Phosphorous), White Gold (Newchemi), Panther (Bhaskar Agro Chemicals), Blaze (Indofil), Super Killer (Pary Chemicals), Starcip (Shaw Wallace), Super Killer (Dhanuka), Baadha (Sabero).

DIAZINON 20 EC, 10% Gr: Basudin (Novartis), Tik-20 (Rallis)

DICHLOROVOS 76 EC: Nuvan (Novartis), Vapona (De’Nocil), Suchlor (Sudarshan Chemicals), Specvos (SPEC), Dicotop (Thakar Chemicals), Amidos (AIMCO), Doom (United Phosphorous), Luvon (Lupin), Hilfol (Hindustan Insecticides), Divap 100 (Pesticides India), Marvex Super (Pary Chemicals), Agro-DDVP (Gujarat Agro), Vantaf (Rallis)

DICOFOL 18.5 EC: Kelthane (Bayer), Difol (Sulphur Mills), Hi Might (SPEC), Dilor (Thakar Chemicals), Tik-Tok (United Phosphorous), Hilfol (Hindustan Insecticides), Hycofol (Hyderabad Chemicals), Hexakil (Pary Chemicals), Dhanuka Dicofol (Dhanuka), Colonels (Indofil)

DIMETHOATE 30 EC: Taifgar (Rallis), Tara-909 (Shaw Wallace), Specgor (Southern Pesticides), Hygro (Hyderabad Chemicals), Tophoate (Thakar Chemicals), Parrydimate (EID Parry), Diadhan (Dhanuka), Miligor (Montari), Dimetox (AIMCO), Nuger (United Phosphorous), Primer (Bhaskar Agro), Tagor (Tropical Agro), Teeka (NFCL), Champ (Searle India), Hexagor (Pary Chemicals), Hilthoate (Hindustan Insecticides)

ENDOSULFAN 35 EC & 4% D, 2% D: Thiodan (Agro Evo), Endocel (Excel), Endosul (Sulphur Mills), ENDOSTAR (Shaw Wallace), Dawn (Southern Pesticides), Hysulfan (Hyderabad Chemicals), Top Sulfan (Thakar Chemicals), Endocin (IOCL), Parry Sulfan (E.I.D. Parry), Endoddhan (Dhanuka), Endonil (Montari), Endosol (AIMCO), Thiokill (United Phosphorous), Lusulfan (Lupin), Agro Sulfan (Gujarat Agro), Hildan (Hindustan Insecticides), Tagsulfan (Tropical Agro), Hexasulfan (Pary Chemicals), Endotaf (Rallis), Speed (NFCL), Devigor (Devi Dayal)

FENITROTHION: Sumithion (Rallis), Polithion (Bayer), Hexafen (Pary Chemicals)

FENVALerate 20 EC 0.4% DUST: Fenval (Searle India), Bifen (Bayer), Starfen (Shaw Wallace), Fen-Fen (Pary Chemicals), Topfen (Thakar Chemicals), Tagfen (Tropical Agro), Trump Card (Dhanuka), Hilfen (Hindustan Insecticides), Fencron (Novartis), Sumitox (AIMCO), Fennkill (United Phosphorous), Lufen (Lupin), Starfen (Shaw Wallace), Agrofen (Gujarat Agro), Bhaskarfen (Bhaskar Agro), Newfen (Gharda), Fenkem (Chemki), Anchor (ICI-Zeneca), Fenny (NFCL), Viper (SPEC), Milfen (Montari), Tataben (Rallis), Fennock 20 (De’Nocil), Bhasma (Wockhardt)

FIPRONIL 0.3% Gr, 5% SC: Regent (Rhoun – Poulrice), Tempo (Agr Evo)

FORMOTHION 25%: Anthio (Novartis)

LINDANE (GAMMA-B.H.C.) 1.3%, 20%EC: Higama (SPEC), Lintox (AIMCO), Lindstar (Shaw Wallace), Lintaf (Rallis)

MALATHION 50 EC: Dhanuka Malathion (Dhanuka), Cythion (Cyanamid Agro), Sulmathion (Sulphur Mills), Specmal (SPEC), Agromala (Gujarat Agro), Malatop (Thakar Chemicals), Himala (Hindustan Insecticides), Malamar (Pary Chemicals), Luthion (Lupin), Malataf (Rallis), Maltox (AIMCO)

Monocrotophos 36% SL: Nuvacron (Novartis), Monocil (De’Nocil), Monovol (Voltas), Atom (Indofil), Sufos
(Sudarshan Chemicals), Monostar (ShawWallance), Specron (Southern Pesticides), Hyacrophi (Hyderabad Chemicals), Topcoil (Thakar Chemicals), Monocin (IOCL), Monochon (New Chemi), Parryphos (EID Parry), Milphos (Montari), Monodhan (Dhanuka), Phoskill (United Phosphorous), Luphos (Lupin), Kadett (PesticidesIndia), Agromonark (Gujarat Agro), Mocar (Bhaskar Agro), Azodrin (Cyanamid Inida), Hilcron (HindustanInsecticides), Macrophos (Tropical Agro), Croton (Searle India), Baiwan (Rallis), Monophos (Parry Chemicals), Monocron (NFCL), Corophos (Coromandel Indag), Bilphos (Bayer), Monosect (Arg Evo)

METHYL-PARATHION 50 EC: Metacid (Bayer), Paratraf (Thakar Chemicals), Dhanumar (Dhanuka), Milion (Montari), Paratrox (AIMCO), Luthion (Lupin), Devithion (Devidayal), Tagpar (Tropical Agro System), Paramar M. (Parry Chemicals), Agro-Para (Gujarat Agro), Paratraf (Rallis)

METHYL-PARATHION Dust 2%: Folidol (Bayer), Paratraf (Sulphur Mills), Dhanudol (Dhanuka), Paratox (AIMCO)

OXY-DEMETON METHYL 25 EC: Metasystox (Bayer), Hexasystox (Parry Chemicals), Dhanusystox (Dhanuka), Mode (Agr Evo)

PHORATE 10 G: Thimet (Cyanamid Agro), Foratox (Pesticides Inida), Volphor (Volrho), Starphor (Shaw Wallace), Specphor (SPEC), Forcin (IOCL), Dhan 100 (Dhanuka), Milate (Montari), Granutox (AIMCO), Umet (United Phosphorous), Luphate (Lupin), Agro-Phorate (Gujarat Agro), Helmet (Tropical Agro Chemicals), WARRANT (Searle India), Hilphorate (Hindustan Insecticides), Grenades

PHOSALONE 35% EC & 4% Dust: Zolone (Rhone-Poulenc), Voltsalone (Volts)

PHOSPHAMIDON 85 S.L.: Dimecron (Novartis), Cildon (De’Nocil), Sumidon (Sudershan Chemicals), Hydan (Hyderabad Chemicals), Topcron (Thakar Chemicals), Aimphon (AIMCO), Umeson (United Phosphorous), Phamidon (Lupin), Agromidon (Gujarat Agro), Hawk (Hindustan Insecticides), Specmidon (SPEC), Rilon (Rallis)

QUINALPHOS 25 EC: Ekalux AF (Novartis), Quinaltaf (Rallis), Flash (Indofil), Quinal (Sulphur Mills), Suquin (Sudershan Chemicals), Quinguard (Gharda), Starlux (Shaw Wallace), Knock (Southern Pesticides), Hyquin (Hyderabad Chemicals), Ekatop (Thakar Chemicals), Smash (Searle India), Chemlux (New Chemi), Shakti (E.I.D. Parry), Dhanulux (Dhanuka), Quinatox (AIMCO), Kinalux (United Phosphorous), Vazra (Lupin), Agroquin (Gujarat Agro), Basquin (Bhaskar Chemicals), Hiliquin (Hindustan Insecticides), Tagquin (Tropical Agro), Quick (NFCL), Volquin (Volts), Bayrusil (Bayer), Krush (Wockhardt)

TRIAZOPHOS 40% EC: Hostathion, Trelka (Agr Evo)

THIODICARB 75% WP: Larvin (Rhone-Poulenc)

Fungicides

AUREOFUNGIN 46.15% SP: Aureofungin Sol (Hindustan Antibiotics)

CAPTAFOLO 80%: Foltal (Rallis)

CAPTAN 50%, 75% SP: Hexacap (Parry Chemicals), Captaf (Rallis), Dhanutan (Dhanuka), Deltan (Coromandel Indag)

CARBENDAZIM 50 WP, 5 Gr: Barvinst, Subeej (BASF), Zoom (United Phosphorous), Agni (EID Parry), Dhanusten (Dhanuka), Derosal (Agro Evo), Aimcozin (AIMCO), Bengard (De’Nocil), Hycarb (Hyderabad Chemicals), Calzin (Lupin), Benzin (Bhaskar Agro), Benfin (Indofil), Carzim (Lupin), Nirmool (Shaw Wallace), Diafurauz (Pesticides India), Stare (Parry Chemicals), Zen (NFCL), Volzim (Volts), Agrozim (Gujarat Agro), Arrest (Searle)

EDIFENPHOS 50 EC: Hinosan (Bayer)

HEXCONAZOLE 5% EC: Contaf (Rallis)

MANCOZEB 75%: Dithane M-45 (Bayer), Uthane M-45 (United Phosphorous), Luzen (Lupin), Dhauka M-45

197
All India Coordinated Research Project for Dryland Agriculture (AICRPDA)

(Dhanuka), Hilthane (Hindustan Insecticides), Shield (Pesticides India), Spic Mancozeb (Spic), Zeb (NFCL), Manzate (Dapal), Zebthane (Rallis), Luzim (Lupin), Abic M45 (novartis), Aimcozeb (AIMCO), Agromanco (Gujarat Agro), Indofil M-45 (Indofil), Sparsh (Wockhardt), Saviour (De’Nocil)

PROPICONAZOLE: Radar (Rallis), Tilt (Navartis)

STREPTOCYCLINE: Streptomycin (Hindustan Antibiotics), Plantomycin (Aries Agrovet)

SULPHUR 85 W.P. & DUST: Sultaf (Rallis), Insulf (united Phosphorous), Dhanusulf (Dhanuka), Sulphosan (AIMCO), Thiovit (Novartis), Farmasulf (Shaw Wallance), Microsulf (Parry Chemicals), Sulfin M-20 (Gujarat Agro), Hexasul (Parry Chemicals), Sulfcol, Wet-Sulf (Excel).

TRIDEMORPH 80% EC: Calixin (BASF)

THIRAM 75%: Hexathane (Parry Chemicals), Thiride (IEL), Vegfru thiram (Pesticides India)

ZINEB 75% W.D.P.: Hexathane (Parry Chemicals), Discon-Z (AIMCO), Devizeb (Devidayal)

ZIRAM 80% WP, 27% CS: Cuman L. (Novartis), Hexazir (Parry Chemicals), Ziride (IEL), Vegfru Zitox (Pesticides India), Tagziron (Tropical Agro)